Preview

Dokuchaev Soil Bulletin

Advanced search

The chemical composition in the salt excretion of Tamarix ramosissima under conditions of different soil salinity level

https://doi.org/10.19047/0136-1694-2016-82-110-121

Abstract

Being grown on soils with different salinity degree, Tamarix ramosissima as the major representative of crinohalophytes reveals its ability to accumulate and removal the soluble salts. This is evidenced by a conjugated analysis to determine the chemical composition of soluble salts in ground waters, salt crusts, plant tissues and the salt excretion covering the Tamarix ramosissima sprigs. In these studies the soils were represented by hydromorphic solonchaks with salt crusts 5 and 0.1 cm thick and the content of toxic salts accounted for 32.4 and 57.6 respectively. The salinity was sulfate-sodium by nature. Based upon a comparative analysis of definite anions and cations in plant tissues and the salt excretion it seemed possible to notice that their content in salt secreted is higher by 3.2-7.7 times as compared to that in plant tissues. There is much in common in the content of cations and anions in the salt excretion of Tamarix ramosissima that can be presented in the following way: Na+ > Mg2+ > Ca2+ > K+ и Cl- > SO42-. It has been also established that the maximal removal of Na+ and Cl- in the salt excretion doesn’t connected with the amount of given ions in ground waters. One should be assumed that the content of Na+, Ca2+, Mg2+ и SO42- is associated with the concentration of these cations in salt crusts of the studied solonchaks. It is worthy of note that the Cl- exudation is not dependent on its content in the ground water and salt crust being comparable with Na+ exudation. Thus, Tamarix ramosissima grown under natural conditions reveals no direct dependence between the ions exudation by plants in the kind of salt excretion, the chemical composition and the amount of salts in soil (salt crust) and the ground water.

About the Authors

E. V. Shuyskaya
K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science
Russian Federation


M. P. Lebedeva
V.V. Dokuchaev Soil Science Institute
Russian Federation


A. V. Kolesnikov
Institute of Forest Science, Russian Academy of Sciences (ILAN)
Russian Federation


T. I. Borisochkina
V.V. Dokuchaev Soil Science Institute
Russian Federation


K. N. Toderich
International Center for Biosaline Agriculture (ICBA)
Russian Federation


References

1. Базилевич Н.И., Чижикова Н.П. Почвы Каракумов, стационар Репетек // Продуктивность растительности аридной зоны Азии. Итоги советских исследований по международной биологической программе 1965-1974 гг. Л.: Наука, 1977. С. 121-124.

2. Базилевич Н.И., Чепурко Н.Л., Родин Л.Е. Мирошниченко Ю.М. Биогеохимия и продуктивность черносаксаульников Юго-восточных Каракумов // Проблемы освоения пустынь. 1972. № 5. С. 3-8.

3. Балнокин Ю.В. Ионный гомеостаз и солеустойчивость растений. М.: Наука, 2012. 99с.

4. Воробьева Л.А. Химический анализ почв. М.: Изд-во Моск. ун-та, 1998. 272 с.

5. Гаель А.Г. О роли растений в почвообразовании в пустыне Каракум, о песчаных почвах и их плодородии // Известия государственного географического общества. 1939. Т. 71. Вып. 8. С. 1105-1128.

6. Гаель А.Г. Облесение аридных областей Арало-Каспия // Лесное хозяйство. 1975. № 3. С. 2-9.

7. Гунин П.Д. Экология процессов опустынивания аридных экосистем. М.: ВАСХНИЛ им. В.И. Ленина, 1990. 354 с.

8. Родин Л.Е., Базилевич Н.И. Динамика органического вещества и биологический круговорот зольных элементов и азота в основных типах растительности Земного Шара. М.-Л., 1965. 253 с.

9. Чаховский А.А., Бурова Э.А., Орленок Е.И., Гусарова Л.П. Красивоцветущие кустарники для садов и парков. Мн.: Ураджай, 1988. 144 с.

10. Чижикова Н.П., Лебедева-Верба М.П. Трансформации глинистых минералов почв песчаных пустынь под разными типами саксаульников // Бюл. Почв. ин-та им. В.В. Докучаева. 2014. Вып. 76. С. 74-90.

11. Berry W.L. Characteristics of salt secreted by Tamarix aphylla // Am. J. Bot. 1970. V. 57(10). P. 1226-1230.

12. Berry W.L., Thompson W.W. Composition of salt secreted by salt glands of Tamarix aphylla // Canadian J. Botany. 1967. 45. P. 1774-1775.

13. Carter J.M., Nippert J.B. Leaf-level physiological responses of Tamarix ramosissima to increasing salinity // J. Arid Environments. 2012. V. 77. P. 17-24.

14. Cleverly J.R., Smith S.D., Sala A., Devitt D.A. Invasive capacity of Tamarix ramosissima in a Mojave Desert foodplain: the role of drought // Oecologia. 1997. V. 111. P. 12-18.

15. Ding X., Tian Ch., Zhang Sh., Song J., Zhang F., Mi G., Feng G. Effects of NO3--N on the growth and salinity tolerance of Tamarix laxa Willd // Plant Soil. 2010. V. 331. P. 57-67.

16. Glenn E.P., Nagler P.L., Morino K., Hultine K.R. Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment // Plant Soil. 2013. V. 371. P. 655-672.

17. Kleinkopf G.E., Wallace A. Physiological basis for salt tolerance in Tamarix ramosissima // Plant Sci. Lett. 1974. V. 3. P. 157-163.

18. Ksouri R., Falleh H., Megdiche W., Trabelsi N., Mhamdi B., Chaieb K., Bakrouf A., Magnq C., Abdelly C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents // Food and Chemical Toxicology. 2009. V. 47. P. 2083-2091.

19. Ladenburger C.G., Hild A.L., Kazmer D.J., Munn L.C. Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA // J. Arid Environments. 2006. V. 65(1). P. 111-128.

20. Liu J., Xia J., Fang Y., Li T., Liu J. Effects of Salt-Drought Stress on Growth and Physiobiochemical Characteristics of Tamarix chinensis Seedlings // The Scientific World J. 2014. Article ID 765840.

21. Ma H.Y., Tian C.Y., Feng G. et al. Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively // Sci. China Life Sci. 2011. V. 54. P. 282-289 doi: 10.1007/s11427-011-4145-2

22. Natale E., Zalba S.M., Oggero A., Reinoso H. Establishment of Tamarix ramosissima under different conditions of salinity and water availability: Implications for its management as an invasive species // J. of Arid Environments. 2010. V. 74. P. 1399-1407.

23. Scholander P.F., Hammel H.T., Hemmingsen E., Garey W. Salt balance in mangroves // Plant Physiology 1962. V. 37. P. 722-729.

24. Sookbirsingh R., Castillo K., Gill T.E., Chianelli R.R. Salt Separation Processes in the Saltcedar Tamarix ramosissima (Ledeb.) // Commun. Soil Sci. Plan Anal. 2010. V. 41 (10). P. 1271-1281.

25. Storey R., Thompson W.W. An x-ray microanalysis study of the salt glands and intracellular calcium crystals of Tamarix // Annals of Botany. 1994. V. 73. P. 307-313.

26. Stromberg J.C., Lite Sh.J., Marler R., Paradzick Ch., Shafroth P.B., Shorrock D., White J.M., White M.S. Altered stream-flow regimes and invasive plant species: the Tamarix case // Global Ecol. Biogeogr. 2007. V. 16. P. 381-393.

27. Thomson W.W., Berry W.L., Liu L.L. Localization and secretion of salt by the salt blands of Tamarix aphylla // Proc. N.A.S. 1969. V. 63/ p. 310-317.

28. Vandersande M.W., Glenn E.P., Walworth J.L. Tolerance of five riparian plants from the lower Colorado River to salinity drought and inundation // J. Arid Environments. 2001. V. 49. P. 147-159.


Review

For citations:


Shuyskaya E.V., Lebedeva M.P., Kolesnikov A.V., Borisochkina T.I., Toderich K.N. The chemical composition in the salt excretion of Tamarix ramosissima under conditions of different soil salinity level. Dokuchaev Soil Bulletin. 2016;(82):110-121. (In Russ.) https://doi.org/10.19047/0136-1694-2016-82-110-121

Views: 937


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)