Zymography: developing of the enzyme soil activity visualization method
https://doi.org/10.19047/0136-1694-2022-113-58-89
Abstract
The enzymes produced by the soil biota are a key link in the regulation of biochemical processes. The soil enzyme activity can be visualized with zymography, a method based on using fluorescent substrates and obtaining two-dimensional images (zymograms). A variant of a zymographic measuring system has been proposed. Characteristics of lighting, photographic equipment and shooting modes, reagents preparation and calibration are presented. Preparing and analyzing soil samples of different texture (sand and clay loam) and processing the study results have been described. The ways of introducing the substrate are considered in this study, namely pipetting, short-time dipping, and saturation. An analysis of the kinetics of incubation of samples was carried out. The possibilities and disadvantages of the method were also considered and options for solving possible methodological problems during the analysis were proposed. The zymography is a promising method that allows comparing data with the results of other methods. The use of neural network technologies makes it possible to obtain the volumetric distribution of soil enzymes with high reliability. The soil zymography requires qualitative preparatory work and extreme accuracy during the analysis. It is necessary to ensure maximum contact between the substrate and the soil, as this is one of the key factors determining the quality of the results. The most optimal way to introduce the substrate is to saturate the membranes with substrate solution for 60 minutes. At this stage of the development of the method, it is not possible to establish a universal sample incubation time, since this depends on characteristics of both the studied soils and the experiment conditions. Also, it is necessary to document the conditions in detail for discussion the study results.
About the Authors
M. V. TimofeevaRussian Federation
K. N. Abrosimov
Russian Federation
A. V. Yudina
Russian Federation
D. S. Fomin
Russian Federation
V. V. Klyueva
Russian Federation
References
1. Dadenko E.V., Kazeev K.Sh., Kolesnikov S.I., Val'kov V.F., Izmenenie fermentativnoi aktivnosti pri khranenii pochvennykh obraztsov (Changes in the enzymatic activity of soil samples upon their storage), Pochvovedenie, 2009, No. 12, pp. 1481–1486.
2. Devyatova T.A., Fermentativnaya aktivnost' chernozema vyshchelochennogo pri dlitel'nom sistematicheskom primenenii udobrenii (Enzymatic activity of leached chernozem upon long-term application of fertilizers), Agrokhimiya, 2006, No. 1, pp. 12–15.
3. Efremova T.T., Ovchinnikova T.M., Sezonnaya oksireduktaznaya aktivnost' osushennykh torfyanykh pochv v svyazi s gidrotermicheskimi usloviyami sredy (Seasonal oxidoreductase activity of reclaimed peat soil in connection with the hydrothermal environmental conditions), Sibirskii ekologicheskii zhurnal, 2008, Vol. 15, No. 3, pp. 441–449.
4. Inisheva L.I., Ivleva S.N., Shcherbakova T.A., Rukovodstvo po opredeleniyu fermentativnoi aktivnosti torfyanykh pochv i torfov (Handbook for enzymatic activity determination of peat soils and peats), Tomsk: Natsional'nyi issledovatel'skii Tomskii gosudarstvennyi universitet, 2003, 119 p.
5. Kashirskaya N.N., Plekhanova L N., Chernysheva E.V., El'tsov M.V., Udal'tsov S.N., Borisov A.V., Prostranstvenno-vremennye osobennosti fosfataznoi aktivnosti estestvennykh i antropogenno-preobrazovannykh pochv (Temporal and spatial features of phosphatase activity in natural and human-transformed soils), Pochvovedenie, 2020, No. 1, pp. 89–101.
6. Khaziev F.Kh., Metody pochvennoi enzimologii (Methods of soil enzymology), Moscow: Nauka, 1990, 192 p.
7. Alkorta I., Aizpurua A., Riga P., Albizu I., Amézaga I., Garbisu C., Soil enzyme activities as biological indicators of soil health, Reviews on Environmental Health, 2003, Vol. 18, No. 1, pp. 65–73, DOI: 10.1515/REVEH.2003.18.1.65.
8. Baldrian P., Větrovský T., Scaling down the analysis of environmental processes: Monitoring enzyme activity in natural substrates on a millimeter resolution scale, Appl. Environ. Microbiol., 2012, Vol. 78, No. 9, pp. 3473–3475, DOI: 10.1128/AEM.07953-11.
9. Bilyera N., Kuzyakova I., Guber A., Razavi B.S., Kuzyakov Y., How “hot” are hotspots: Statistically localizing the high-activity areas on soil and rhizosphere images, Rhizosphere, 2020, Vol. 16, p. 100259, DOI: 10.1016/j.rhisph.2020.100259.
10. Bilyera N., Zhang X., Duddek P., Fan L., Banfield C.C., Schlüter S., Carminati A., Kaestner A., Ahmed M.A., Kuzyakov Y., Dippold M.A., Spielvogel S., Razavi B.S., Maize genotype-specific exudation strategies: an adaptive mechanism to increase microbial activity in the rhizosphere, Soil Biol. Biochem., 2021, Vol. 162, p. 108426, DOI: 10.1016/j.soilbio.2021.108426.
11. Burns R.G., Soil enzymology, Sci. Prog., 1977, Vol. 64, No. 254, pp. 275–285, URL: https://www.jstor.org/stable/43420415.
12. Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraub M.N., Zoppini A., Soil enzymes in a changing environment: Current knowledge and future directions, Soil Biol. Biochem., 2013, Vol. 58, pp. 216–234, DOI: 10.1016/j.soilbio.2012.11.009.
13. Cao T., Kong X., He W., Chen Y., Fang Y., Li Q., Chen Q., Luo Y., Tian X., Spatiotemporal characteristics of enzymatic hotspots in subtropical forests: In situ evidence from 2D zymography images, Catena, 2022, Vol. 216, p. 106365, DOI: 10.1016/j.catena.2022.106365.
14. Dong S., Brooks D., Jones M.D., Grayston S.J., A method for linking in situ activities of hydrolytic enzymes to associated organisms in forest soils, Soil Biol. Biochem., 2007, Vol. 39, No. 9, pp. 2414–2419, DOI: 10.1016/j.soilbio.2007.03.030.
15. Duan C., Fang L., Yang C., Chen W., Cui Y., Li S., Reveal the response of enzyme activities to heavy metals through in situ zymography, Ecotoxicol. Environ. Safety., 2018, Vol. 156, pp. 106–115, DOI: 10.1016/j.ecoenv.2018.03.015.
16. Ge T., Wei X., Razavi B.S., Zhu Z., Hu Y., Kuzyakov Y., Jones D.L., Wu J., Stability and dynamics of enzyme activity patterns in the rice rhizosphere: effects of plant growth and temperature, Soil Biol. Biochem., 2017, Vol. 113, pp. 108–115, DOI: 10.1016/j.soilbio.2017.06.005.
17. Gianfreda L., Bollag J.M., Effect of soils on the behavior of immobilized enzymes, SSSA Journal, 1994, Vol. 58, No. 6, pp. 1672–1681, DOI: 10.2136/sssaj1994.03615995005800060014x.
18. Giles C.D., Dupuy L., Boitt G., Brown L.K., Condron L.M., Darch T., Blackwell M.S.A., Menezes-Blackburn D., Shand C.A., Stutter M.I., Lumsdon D.G., Wendler R., Cooper P., Wearing C., Zhang H., Haygarth P.M., Georgea T.S., Root development impacts on the distribution of phosphatase activity: improvements in quantification using soil zymography, Soil Biol. Biochem., 2018, Vol. 116, pp. 158–166, DOI: 10.1016/j.soilbio.2017.08.011.
19. Gramms G., Voigt K.D., Kirsche B., Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material, Chemosphere, 1999, Vol. 38, pp. 1481–1494, DOI: 10.1016/S0045-6535(98)00369-5.
20. Guber A., Kravchenko A., Razavi B.S., Uteau D., Peth S., Blagodatskaya E., Kuzyakov Y., Quantitative soil zymography: mechanisms, processes of substrate and enzyme diffusion in porous media, Soil Biol. Biochem., 2018, Vol. 127, pp. 156–167, DOI: 10.1016/j.soilbio.2018.09.030.
21. Guber A.K., Kravchenko A.N., Razavi B.S., Blagodatskaya E., Kuzyakov Y., Calibration of 2‐D soil zymography for correct analysis of enzyme distribution, Eur. J. Soil Sci., 2019, Vol. 70, No. 4, p. 715–726, DOI: 10.1111/ejss.12744.
22. Guber A., Blagodatskaya E., Juyal A., Razavi B.S., Kuzyakov Y., Kravchenko A., Time-lapse approach to correct deficiencies of 2D soil zymography, Soil Biol. Biochem., 2021, Vol. 157, p. 108225, DOI: 10.1016/j.soilbio.2021.108225.
23. Hapca S., Baveye P. C., Wilson C., Lark R. M., Otten W., Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-Ray CT images, Plos one, 2015, Vol. 10, No. 9, p. e0137205, DOI: 10.1371/journal.pone.0137205.
24. Heitkötter J., Marschner B., Soil zymography as a powerful tool for exploring hotspots and substrate limitation in undisturbed subsoil, Soil Biol. Biochem., 2018, Vol. 124, p. 210–217, DOI: 10.1016/j.soilbio.2018.06.021.
25. Hoang D.T.T., Razavi B.S., Kuzyakov Y., Blagodatskaya E., Earthworm burrows: kinetics and spatial distribution of enzymes of C-, N-and P-cycles, Soil Biol. Biochem., 2016, Vol. 99, pp. 94–103, DOI: 10.1016/j.soilbio.2016.04.021.
26. Khosrozadeh S., Guber A., Kravchenko A., Ghaderi N., Blagodatskaya E., Soil oxidoreductase zymography: Visualizing spatial distributions of peroxidase and phenol oxidase activities at the root-soil interface, Soil Biol. Biochem., 2022, Vol. 167, p. 108610, DOI: 10.1016/j.soilbio.2022.108610.
27. Kravchenko A., Guber A., Razavi B.S., Koestel J., Blagodatskaya E., Kuzyakov Y., Spatial patterns of extracellular enzymes: combining X-ray computed micro-tomography and 2D zymography, Soil Biol. Biochem. 2019a, Vol. 135, pp. 411–419, DOI: 10.1016/j.soilbio.2019.06.002.
28. Kravchenko A.N., Guber A.K., Razavi B.S., Koestel J., Quigley M.Y., Robertson G.P., Kuzyakov Y. Microbial spatial footprint as a driver of soil carbon stabilization, Nat. Commun., 2019b, Vol. 10, No. 1, pp. 1–10, DOI: 10.1038/s41467-019-11057-4.
29. Kravchenko A., Guber A., Gunina A., Dippold M., Kuzyakov Y., Pore‐scale view of microbial turnover: Combining 14C imaging, μCT and zymography after adding soluble carbon to soil pores of specific sizes, Eur. J. Soil Sci., 2021, Vol. 72, No. 2, pp. 593–607, DOI: 10.1111/ejss.13001.
30. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept and review, Soil Biol. Biochem., 2015, Vol. 83, pp. 184–199, DOI: 10.1016/j.soilbio.2015.01.025.
31. Ma X., Razavi B.S., Holz M., Blagodatskaya E., Kuzyakov Y., Warming increases hotspot areas of enzyme activity and shortens the duration of hot moments in the root-detritusphere, Soil Biol. Biochem., 2017, Vol. 107, pp. 226–233, DOI: 10.1016/j.soilbio.2017.01.009.
32. Pinton R., Varanini Z., Nannipieri P., The rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms, The rhizosphere, CRC Press, 2000, pp. 17–34.
33. Rao M.A., Violante A., Gianfreda L., Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability, Soil Biol. Biochem., 2000, Vol. 32, pp. 1007–1014, DOI: 10.1016/S0038-0717(00)00010-9.
34. Razavi B.S., Zarebanadkouki M., Blagodatskaya E., Kuzyakov Y., Rhizosphere shape of lentil and maize: spatial distribution of enzyme activities, Soil Biol. Biochem, 2016, Vol. 96., pp. 229–237, DOI: 10.1016/j.soilbio.2016.02.020.
35. Razavi B.S., Zhang X., Bilyera N., Guber A., Zarebanadkouki M., Soil zymography: simple and reliable? Review of current knowledge and optimization of the method, Rhizosphere, 2019, Vol. 11, p. 100161, DOI: 10.1016/j.rhisph.2019.100161.
36. Razavi B.S., Hoang D., Kuzyakov Y., Visualization of enzyme activities in earthworm biopores by in situ soil zymography, Methods in Molecular Biology. Zymography. New York: Humana Press, 2017, pp. 229–238, DOI: 10.1007/978-1-4939-7111-4.
37. Sanaullah M., Razavi B.S., Blagodatskaya E., Kuzyakov Y., Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface, Biol. Fertil. Soils, 2016, Vol. 52, pp. 505–514, DOI: 10.1007/s00374-016-1094-8.
38. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden С., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardola A., Fiji: an open-source platform for biological-image analysis, Nature methods, 2012, Vol. 9, No. 7, pp. 676–682, DOI: 10.1038/nmeth.2019.
39. Schofield E.J., Brooker R.W., Rowntree J.K., Price E.A.C., Brearley F.Q., Paterson E., Plant-plant competition influences temporal dynamism of soil microbial enzyme activity, Soil Biol. Biochem., 2019, Vol. 139, p. 107615, DOI: 10.1016/j.soilbio.2019.107615.
40. Spohn M., Kuzyakov Y., Distribution of microbial-and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – Coupling soil zymography with 14C imaging, Soil Biol. Biochem., 2013, Vol. 67, pp. 106–113, DOI: 10.1016/j.soilbio.2013.08.015.
41. Spohn M., Carminati A., Kuzyakov Y., Soil zymography – a novel in situ method for mapping distribution of enzyme activity in soil, Soil Biol. Biochem., 2013, Vol. 58, pp. 275–280, DOI: 10.1016/j.soilbio.2012.12.004.
42. Spohn M., Kuzyakov Y. Spatial and temporal dynamics of hotspots of enzyme activity as affected by living and dead roots – a soil zymography analysis, Plant Soil, 2014, Vol. 379, pp. 67–77, DOI: 10.1007/s11104-014-2041-9.
43. Steinweg J.M., Dukes J.S., Paul E.A., Wallenstein M.D., Microbial responses to multi-factor climate change: effects on soil enzymes, Front. Microbiol., 2013, Vol. 4, 146 p., DOI: 10.3389/fmicb.2013.00146.
44. Tabatabai M.A., Dick W.A., Enzymes in soil: research and developments in measuring activities, Enzymes in the environment: Activity, ecology, and applications, New York: Marcel Dekker, 2002, pp. 567–596.
45. Wallenstein M.D., Weintraub M.N., Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes, Soil Biol. Biochem. 2008, Vol. 40, No. 9, pp. 2098–2106, DOI: 10.1016/j.soilbio.2008.01.024.
46.
Review
For citations:
Timofeeva M.V., Abrosimov K.N., Yudina A.V., Fomin D.S., Klyueva V.V. Zymography: developing of the enzyme soil activity visualization method. Dokuchaev Soil Bulletin. 2022;(113):58-89. (In Russ.) https://doi.org/10.19047/0136-1694-2022-113-58-89