Открытая библиотека спектральных почвенных данных Бразилии
https://doi.org/10.19047/0136-1694-2024-119-261-305
Аннотация
Среди различных репозиториев Бразильская библиотека спектральных почвенных данных (BSSL, https://bibliotecaespectral.wixsite.com/english), созданная и поддерживаемая исследовательской группой GeoCiS, отражает в полной мере педоразнообразие указанного региона, так как она сочетает в себе почвенные спектры, полученные в результате как сельскохозяйственных, так и экологических исследований. База данных BSSL содержит 16 084 наблюдения, включающих сведения о физико-химических свойствах поверхностного слоя почвы, гармонизированные со спектрами в видимом, ближнем инфракрасном, коротковолновом инфракрасном (Vis-NIR-SWIR, 350–2 500 нм) и среднем инфракрасном (MIR, 4 000–600 см-¹) диапазонах, для 26 бразильских штатов и 1 федерального округа. В настоящий момент эта база данных находится в открытом доступе – https://zenodo.org/records/8361419. Идея создания BSSL возникла в 1995 г. Работа была закончена в 2019 г., и была открыта для пользователей в 2023 году. В процессе создания осуществлялась фильтрация данных, что обеспечило достоверность и ценность предоставляемой информации. Была проведена оценка согласованности и качества с использованием корреляции Пирсона и алгоритма Cubist в среде R. Анализ моделей показал надежную прогностическую способность спектральной базы данных, облегчающую моделирование ключевых почвенных свойств. Открытый доступ к Бразильской библиотеке почвенных спектральных данных (BSSL) поможет исследователям подтвердить свои результаты путем сравнения данных прямых измерений с прогнозируемыми значениями, что будет способствовать разработке новых моделей или улучшению уже существующих. BSSL представляет собой спектральную библиотеку глобального уровня благодаря широкому охвату и отображению различных типов тропических почв. Спектральные данные о почве могут помочь правительствам и корпорациям, предоставляя информацию, необходимую для принятия решений, касающихся сохранения или эксплуатации природных ресурсов, а также для мониторинга состояния почв.
Об авторах
J. J. M. NovaisБразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
N. A. Rosin
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
J. T. F. Rosas
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
R. R. Poppiel
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
A. C. Dotto
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
A. F. S. Paiva
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
H. Bellinaso
Бразилия
Department of Agriculture and Supply
H. S. R. Albarracín
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
M. T. A. Amorim
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
B. dos A. Bartsch
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
L. G. Vogel
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
D. C. Mello
Бразилия
Department of Soil Science
M. R. Francelino
Бразилия
Department of Soil Science
M. R. Alves
Бразилия
R. Falcioni
Бразилия
Department of Agronomy
J. A. M. Demattê
Бразилия
Departament of Soil Science, Luiz de Queiroz College of Agriculture
Список литературы
1. Ackerson J.P., Demattê J.A.M., Morgan C.L.S., Predicting clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external parameter orthogonalization, Geoderma, 2015, pp. 259–260, DOI: 10.1016/j.geoderma.2015.06.002.
2. Araújo S.R., Demattê J.A.M., Vicente S., Soil contaminated with chromium by tannery sludge and identified by vis-NIR-mid spectroscopy techniques, Int. J. Remote Sens., 2014, p. 35, DOI: 10.1080/01431161.2014.907940.
3. Bellinaso H., Demattê J.A.M., Romeiro S.A., Soil spectral library and its use in soil classification, Rev. Bras. Ciência do Solo, 2010, Vol. 34, pp. 861–870, DOI: 10.1590/S0100-06832010000300027.
4. Bowers S.A., Hanks R.J., Reflection of radiant energy from soils, Soil Sci., 1965, p. 100, DOI: 10.1097/00010694-196508000-00009.
5. Buol S.W., Solos e agricultura no centro oeste e norte do Brasil, Sci. Agric., 2009, Vol. 66, No. 5, pp. 697–707, DOI: 10.1590/S0103-90162009000500016.
6. Campos R.C., Demattê J.A.M., Cor do solo: uma abordagem da forma convencional de obtenção em oposição à automatização do método para fins de classificação de solos, Rev. Bras. Ciência do Solo, 2004, Vol. 28, pp. 853–863, DOI : 10.1590/s0100-06832004000500008.
7. Carnieletto Dotto A., Demattê J.A.M., Viscarra Rossel R.A., Rizzo R., Soil environment grouping system based on spectral, climate, and terrain data: A quantitative branch of soil series, SOIL 6, 2020, Vol. 6, pp. 163–177, DOI: 10.5194/soil-6-163-2020.
8. Chabrillat S., Ben-Dor E., Cierniewski J., Gomez C., Schmid T., van Wesemael B., Imaging Spectroscopy for Soil Mapping and Monitoring, Surv. Geophys., 2019, Vol. 40, pp. 361–399, DOI: https://doi.org/10.1007/s10712-019-09524-0.
9. Demattê J.A.M., Reflectância espectral de solos. Tese (Livre Docência) – Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 1999, 452 p.
10. Demattê J.A.M., Relações entre dados espectrais e características físicas, químicas e mineralógicas de solos desenvolvidos de rochas eruptivas. Tese (Doutorado) – Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 1995, 265 p.
11. Demattê J.A.M., Bellinaso H., Araújo S.R., Rizzo R., Souza A.B., Spectral regionalization of tropical soils in the estimation of soil attributes, Rev. Cienc. Agron., 2016, Vol. 47, n. 4, pp. 589-598, DOI: 10.5935/1806-6690.20160071.
12. Demattê J.A.M., Bellinaso H., Romero D.J., Fongaro C.T., Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification, Sci. Agric., 2014, Vol. 71, pp. 509–520, DOI: 10.1590/0103-9016-2013-0365.
13. Demattê J.A.M., Campos R.C., Alves M.C., Fiorio P.R., Nanni M.R., Visible-NIR reflectance: A new approach on soil evaluation, Geoderma, 2004, Vol. 121, pp. 95–112, DOI: 10.1016/j.geoderma.2003.09.012.
14. Demattê J.A.M., da Silva Terra F., Spectral pedology: A new perspective on the evaluation of soils along pedogenetic alterations, Geoderma, 2014, Vol. 217, pp. 190–200, DOI: 10.1016/j.geoderma.2013.11.012.
15. Demattê J.A.M., Dotto A.C., Paiva A.F.S., Sato M.V., Dalmolin R.S.D., de Araújo M. do S.B., da Silva E.B., Nanni M.R., ten Caten A., Noronha N.C., Lacerda M.P.C., de Araújo Filho J.C., Rizzo R., Bellinaso H., Francelino M.R., Schaefer C.E.G.R., Vicente L.E., dos Santos U.J., de Sá Barretto Sampaio E.V., Menezes R.S.C., de Souza J.J.L.L., Abrahão W.A.P., Coelho R.M., Grego C.R., Lani J.L., Fernandes A.R., Gonçalves D.A.M., Silva S.H.G., de Menezes M.D., Curi N., Couto E.G., dos Anjos L.H.C., Ceddia M.B., Pinheiro É.F.M., Grunwald S., Vasques G.M., Marques Júnior J., da Silva A.J., Barreto M.C. d. V., Nóbrega G.N., da Silva M.Z., de Souza S.F., Valladares G.S., Viana J.H.M., da Silva Terra F., Horák-Terra I., Fiorio P.R., da Silva R.C., Frade Júnior E.F., Lima R.H.C., Alba J.M.F., de Souza Junior V.S., Brefin M.D.L.M.S., Ruivo M.D.L.P., Ferreira T.O., Brait M.A., Caetano N.R., Bringhenti I., de Sousa Mendes W., Safanelli J.L., Guimarães C.C.B., Poppiel R.R., e Souza A.B., Quesada C.A., do Couto H.T.Z., The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges, Geoderma, 2019, Vol. 354, pp. 113793, DOI: 10.1016/j.geoderma.2019.05.043.
16. Demattê J.A.M., Fongaro C.T., Rizzo R., Safanelli J.L., Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images, Remote Sens. Environ., 2018, Vol. 212, pp. 161–175, DOI: 10.1016/j.rse.2018.04.047.
17. Demattê J.A.M., Garcia G.J., Alteration of Soil Properties through a Weathering Sequence as Evaluated by Spectral Reflectance, Soil Sci. Soc. Am. J., 1999, Vol. 63, pp. 327–342, DOI: 10.2136/sssaj1999.03615995006300020010x.
18. Demattê J.A.M., Horák-Terra I., Beirigo R.M., Terra F. da S., Marques K.P.P., Fongaro C.T., Silva A.C., Vidal-Torrado P., Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring, J. Environ. Manage., 2017, Vol. 197, pp. 50–62, DOI: 10.1016/j.jenvman.2017.03.014.
19. Demattê J.A.M., Mafra A.L., Bernardes F.F., Comportamento espectral de materiais de solos e de estruturas biogênicas associadas, Rev. Bras. Ciência do Solo, 1998, Vol. 22, pp. 621–630, DOI: 10.1590/s0100-06831998000400007.
20. Dematte J.A.M., Nanni M.R., da Silva A.P., de Melo Filho J.F., Dos Santos W.C., Campos R.C., Soil density evaluated by spectral reflectance as an evidence of compaction effects, Int. J. Remote Sens., 2010, Vol. 31, pp. 403–422, DOI: 10.1080/01431160902893469.
21. Demattê J.A.M., Nanni M.R., Formaggio A.R., Epiphanio J.C.N., Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils, Int. J. Remote Sens., 2007, Vol. 28, pp. 4537–4559, DOI: 10.1080/01431160701250408.
22. Demattê J.A.M., Novais J.J., Rosin N.A., Rosas J.T.F., Poppiel R.R., Dotto A.C., Paiva A.F.S., The Brazilian Soil Spectral Library (VIS-NIR-SWIR-MIR) Database: Open Access. Zenodo 2, 2023, DOI: 10.5281/zenodo.8092773.
23. Demattê José A.M., Paiva A.F. da S., Poppiel R.R., Rosin N.A., Ruiz L.F.C., Mello F.A. de O., Minasny B., Grunwald S., Ge Y., Ben Dor E., Gholizadeh A., Gomez C., Chabrillat S., Francos N., Ayoubi S., Fiantis D., Biney J.K.M., Wang C., Belal A., Naimi S., Hafshejani N.A., Bellinaso H., Moura-Bueno J.M., Silvero N.E.Q., The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication, Remote Sens., 2022, Vol. 14, n. 740, pp. 1–27, DOI: https://doi.org/10.3390/rs14030740.
24. Demattê José A.M., Paiva A.F. da S., Poppiel R.R., Rosin N.A., Ruiz L.F.C., Mello F.A. de O., Minasny B., Grunwald S., Ge Y., Dor E. Ben, Gholizadeh A., Gomez C., Chabrillat S., Francos N., Ayoubi S., Fiantis D., Biney J.K.M., Wang C., Belal A., Naimi S., Hafshejani N.A., Bellinaso H., Moura-Bueno J.M., Silvero N.E.Q., Correction to: Demattê et al. The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication, Remote Sens., 2022, Vol. 14, 740, pp. 1459, DOI: 10.3390/rs14061459.
25. Demattê J.A.M., Safanelli J.L., Poppiel R.R., Rizzo R., Silvero N.E.Q., Mendes W. de S., Bonfatti B.R., Dotto A.C., Salazar D.F.U., Mello F.A. de O., Paiva A.F. da S., Souza A.B., Santos N.V. dos, Maria Nascimento C., Mello D.C. de, Bellinaso H., Gonzaga Neto L., Amorim M.T.A., Resende M.E.B. de, Vieira J. da S., Queiroz L.G. de, Gallo B.C., Sayão V.M., Lisboa C.J. da S., Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring, Sci. Rep., 2020, Vol. 10, n. 4461, pp. 1–11, DOI: 10.1038/s41598-020-61408-1.
26. Epiphanio J.C.N., Formaggio A.R., Valeriano M.M., Comportamento espectral de solos do Estado de São Paulo, Inpe, 1992. 143 p.
27. Formaggio A., Epiphanio J., Valeriano M., Oliveira J., Comportamento espectral (450–2.450 nm) de solos Tropicals de Sao Paulo, Rev. Bras. Cienc. Do Solo, 1996, Vol. 20, pp. 467–474,
28. Gallo B.C., Demattê J.A.M., Rizzo R., Safanelli J.L., Mendes W. de S., Lepsch I.F., Sato M. V., Romero D.J., Lacerda M.P.C., Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology, Remote Sens., 2018, Vol. 10, No. 1571, DOI: 10.3390/rs10101571.
29. Greschuk L.T., Demattê J.A.M., Silvero N.E.Q., Rosin N.A., A soil productivity system reveals most Brazilian agricultural lands are below their maximum potential, Sci. Rep., 2023, Vol. 13, 14103, DOI: 10.1038/s41598-023-39981-y.
30. Harris R., Baumann I., Open data policies and satellite Earth observation, Space Policy 32, 2015, DOI: 10.1016/j.spacepol.2015.01.001.
31. Instituto Brasileiro de Geografia e Estatística, IBGE, Brasil em Síntese, Inst. Bras. Geogr. e Estatística, 2017. https://brasilemsintese.ibge.gov.br/
32. Novais J., Lacerda M.P.C., Sentinel-2 imagery usage on environmental monitoring of land use and occupation in a microwatershed in Central Brazil, Gaia Sci., 2021, Vol. 15, pp. 76–92, DOI: 10.22478/ufpb.1981-1268.2021v15n1.54515.
33. Kuhn M., Johnson K., Applied predictive modeling, Applied Predictive Modeling, 2013, pp 329–367, DOI: 10.1007/978-1-4614-6849-3.
34. Kuhn M., Quinlan R., Cubist: rule- and instance-based regression modeling, 2018, 14 p.
35. Lehmann J., Bossio D.A., Kögel-Knabner I., Rillig M.C., The concept and future prospects of soil health, Nat. Rev. Earth Environ., 2020, Vol. 1, pp. 544–553, DOI: 10.1038/s43017-020-0080-8.
36. Mello F.A.O., Demattê J.A.M., Bellinaso H., Poppiel R.R., Rizzo R., de Mello D.C., Rosin N.A., Rosas J.T.F., Silvero N.E.Q., Rodríguez-Albarracín H.S., Remote sensing imagery detects hydromorphic soils hidden under agriculture system, Sci. Rep., 2023, Vol. 13, No. 10897, DOI: 10.1038/s41598-023-36219-9.
37. Mendes W. de S., Demattê J.A.M., de Resende M.E.B., Chimelo Ruiz L.F., César de Mello D., Fim Rosas J.T., Quiñonez Silvero N.E., Ferracciú Alleoni L.R., Colzato M., Rosin N.A., Campos L.R., A remote sensing framework to map potential toxic elements in agricultural soils in the humid tropics, Environ. Pollut., 2022a, Vol. 292, No. 118397, DOI: 10.1016/j.envpol.2021.118397.
38. Mendes W. de S., Demattê J.A.M., Rosin N.A., Terra F. da S., Poppiel R.R., Urbina-Salazar D.F., Boechat C.L., Silva E.B., Curi N., Silva S.H.G., José dos Santos U., Souza Valladares G., The Brazilian soil Mid-infrared Spectral Library: The Power of the Fundamental Range, Geoderma, 2022b, Vol. 415, No. 115776, DOI: 10.1016/j.geoderma.2022.115776.
39. Nanni M.R., Povh F.P., Demattê J.A.M., Oliveira R.B. de, Chicati M.L., Cezar E., Optimum size in grid soil sampling for variable rate application in site-specific management, Sci. Agric., 2011, Vol. 68, No. 3, pp. 386–392, DOI: 10.1590/s0103-90162011000300017.
40. Nocita M., Stevens A., Toth G., Panagos P., van Wesemael B., Montanarella L., Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach, Soil Biol. Biochem., 2014, Vol. 68, pp. 337–347, DOI: 10.1016/j.soilbio.2013.10.022.
41. Novais J.J., Lacerda M.P.C., Sano E.E., Demattê J.A.M., Oliveira M.P., Digital Soil Mapping by Multispectral Modeling Using Cloud-Computed Landsat Time Series, Remote Sens., 2021, Vol. 13, pp. 1–18, DOI: 10.3390/rs13061181.
42. Novais J.J., Poppiel R.R., Lacerda M.P.C., Demattê J.A.M., VNIR-SWIR Spectroscopy, XRD and Traditional Analyses for Pedomorphogeological Assessment in a Tropical Toposequence, AgriEngineering, 2023, Vol. 5, pp. 1581–1598, DOI: 10.3390/agriengineering5030098.
43. Obukhov A.I., Orlov D.S., Spectral reflectivity of the major soils group and possibility of using diffuse reflection in soil investigation, Sov. Soil Sci., 1964, Vol. 1, pp. 174–184.
44. Paiva A.F. da S., Poppiel R.R., Rosin N.A., Greschuk L.T., Rosas J.T.F., Demattê J.A.M., The Brazilian Program of soil analysis via spectroscopy (ProBASE): Combining spectroscopy and wet laboratories to understand new technologies, Geoderma, 2022, Vol. 421, DOI: 10.1016/j.geoderma.2022.115905.
45. Poppiel R.R., Lacerda M.P.C., Safanelli J.L., Rizzo R., Oliveira M.P., Novais J.J., Demattê J.A.M., Mapping at 30 m resolution of soil attributes at multiple depths in midwest Brazil, Remote Sens., 2019, Vol. 11, DOI: 10.3390/rs11242905.
46. Poppiel R.R., Lacerda M.P.C., Safanelli J.L., Rizzo R., Oliveira M.P., Novais J.J., Demattê J.A.M., Mapping at 30 m resolution of soil attributes at multiple depths in midwest Brazil, Remote Sens., 2019, Vol. 11, No. 24, DOI: 10.3390/rs11242905.
47. Poppiel R.R., Paiva A.F. da S., Demattê J.A.M., Bridging the gap between soil spectroscopy and traditional laboratory: Insights for routine implementation, Geoderma, 2022, Vol. 425, DOI: 10.1016/j.geoderma.2022.116029.
48. Quinlan J.R., C4.5 Programs for Machine Learning, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1992. pp. 301.
49. R Core Team, R: A language and environment for statistical computing, R Found. Stat. Comput., 2019.
50. Ramos F.T., Dores E.F. de C., Weber O.L. do. S., Beber D.C., Campelo J.H., Maia J.C. d. S., Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil, J. Sci. Food Agric., 2018, Vol. 98, pp. 3595–3602, DOI: 10.1002/jsfa.8881.
51. Rizzo R., Demattê J.A.M., Lepsch I.F., Gallo B.C., Fongaro C.T., Digital soil mapping at local scale using a multi-depth Vis-NIR spectral library and terrain attributes, Geoderma, 2016, Vol. 27, pp. 18–27, DOI: 10.1016/j.geoderma.2016.03.019.
52. Romero D.J., Ben-Dor E., Demattê J.A.M., Souza A.B. e., Vicente L.E., Tavares T.R., Martello M., Strabeli T.F., da Silva Barros P.P., Fiorio P.R., Gallo B.C., Sato M.V., Eitelwein M.T., Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis, Geoderma, 2018, Vol. 312, pp. 95–103, DOI: 10.1016/j.geoderma.2017.09.014.
53. Rosin N.A., Demattê J.A.M., Poppiel R.R., Silvero N.E.Q., Rodriguez-Albarracin H.S., Rosas J.T.F., Greschuk L.T., Bellinaso H., Minasny B., Gomez C., Marques Júnior J., Fernandes K., Mapping Brazilian soil mineralogy using proximal and remote sensing data, Geoderma, 2023, 432, DOI: 10.1016/j.geoderma.2023.116413.
54. Safanelli J.L., Chabrillat S., Ben-Dor E., Demattê J.A.M., Multispectral models from bare soil composites for mapping topsoil properties over Europe, Remote Sens., 2020, Vol. 12, DOI: 10.3390/RS12091369.
55. Santos U.J. dos, Demattê J.A. de M., Menezes R.S.C., Dotto A.C., Guimarães C.C.B., Alves B.J.R., Primo D.C., Sampaio E.V. de S.B., Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil, Geoderma, 2020, Vol. 23, DOI: 10.1016/j.geodrs.2020.e00333.
56. Sato M.V., Primeira aproximação da biblioteca espectral de solos do Brasil: caracterização de espectros de solos e quantificação de atributos: Dissertação de Mestrado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2015, pp. 103, DOI: 10.11606/D.11.2015.tde-15102015-152045.
57. Schaefer C.E.G.R., Fabris J.D., Ker J.C., Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review, Clay Miner, 2008, Vol. 43, pp. 137–154, DOI: 10.1180/claymin.2008.043.1.11.
58. Schoeneberger P.J., Wysocki D.A., Benham E.C., Soil Survey Staff, Field Book for Describing and Sampling Soils, Version 3.0, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE. Natl. Soil Surv. Ctr., Lincoln, NE, 2012.
59. Souza A.B., Demattê J.A.M., Mello F.A.O., Salazar D.F.U., Mendes W.S., Safanelli J.L., Ratio of Clay Spectroscopic Indices and its approach on soil morphometry, Geoderma, 2020, Vol. 357, DOI: 10.1016/j.geoderma.2019.113963.
60. Stenberg B., Viscarra Rossel R.A., Mouazen A.M., Wetterlind J., Visible and Near Infrared Spectroscopy in Soil Science, Advances in Agronomy, 2010, Vol. 107, pp. 163–215, DOI: 10.1016/S0065-2113(10)07005-7.
61. Stoner E.R., Baumgardner M.F., Characteristic Variations in Reflectance of Surface Soils, Soil Sci. Soc. Am. J., 1981, Vol. 45, pp. 1161–1165, DOI: 10.2136/sssaj1981.03615995004500060031x.
62. Teixeira P.C., Donagemma G.K., Fontana A., Teixeira W.G., Manual de métodos de análise de solo, Embrapa, 2017.
63. Terra F.S., Demattê J.A.M., Viscarra Rossel R.A., Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis-NIR and mid-IR reflectance data, Geoderma, 2015, Vol. 255–256, pp. 81–93, DOI: 10.1016/j.geoderma.2015.04.017.
64. Tiessen H., Cuevas E., Chacon P., The role of soil organic matter in sustaining soil fertility, Nature, 1994, Vol. 371, pp. 783–785, DOI: 10.1038/371783a0.
65. Tziolas N., Tsakiridis N., Ogen Y., Kalopesa E., Ben-Dor E., Theocharis J., Zalidis G., An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs, Remote Sens. Environ., 2020, Vol. 244, DOI: 10.1016/j.rse.2020.111793.
66. Viscarra Rossel R.A., Behrens T., Ben-Dor E., Brown D.J., Demattê J.A.M., Shepherd K.D., Shi Z., Stenberg B., Stevens A., Adamchuk V., Aïchi H., Barthès B.G., Bartholomeus H.M., Bayer A.D., Bernoux M., Böttcher K., Brodský L., Du C.W., Chappell A., Fouad Y., Genot V., Gomez C., Grunwald S., Gubler A., Guerrero C., Hedley C.B., Knadel M., Morrás H.J.M., Nocita M., Ramirez-Lopez L., Roudier P., Campos E.M.R., Sanborn P., Sellitto V.M., Sudduth K.A., Rawlins B.G., Walter C., Winowiecki L.A., Hong S.Y., Ji W., A global spectral library to characterize the world’s soil, Earth-Science Rev., 2016, Vol. 155, pp. 198–230, DOI: 10.1016/j.earscirev.2016.01.012.
67. Viscarra Rossel R.A., Webster R., Bui E.N., Baldock J.A., Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change, Glob. Chang. Biol., 2014, Vol. 20, pp. 2953–2970, DOI: 10.1111/gcb.12569.
Дополнительные файлы
|
1. Графический абстракт | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(14MB)
|
Метаданные ▾ |
![]() |
2. Table 1. Information of contributors, or institutions, who agreed with the data availability: owner code, name, email, affiliation, number of samples and sample state. | |
Тема | ||
Тип | Исследовательские инструменты | |
Скачать
(148KB)
|
Метаданные ▾ |
- Now the Brazilian Soil Spectral Library is open to the community.
- The BSSL has been a diffuser of technology in Brazil and the world.
- Soil spectroscopy is a method that brings together several disciplines.
- Soil satellite images can be validated using the BSSL database.
- BSSL has served many purposes, from research to public policy and private initiatives.
Рецензия
Для цитирования:
Novais J.J., Rosin N.A., Rosas J.T., Poppiel R.R., Dotto A.C., Paiva A.F., Bellinaso H., Albarracín H.S., Amorim M.T., Bartsch B., Vogel L.G., Mello D.C., Francelino M.R., Alves M.R., Falcioni R., Demattê J.A. Открытая библиотека спектральных почвенных данных Бразилии. Бюллетень Почвенного института имени В.В. Докучаева. 2024;(119):261-305. https://doi.org/10.19047/0136-1694-2024-119-261-305
For citation:
Novais J.J., Rosin N.A., Rosas J.T., Poppiel R.R., Dotto A.C., Paiva A.F., Bellinaso H., Albarracín H.S., Amorim M.T., Bartsch B., Vogel L.G., MeMello D.C., Francelino M.R., Alves M.R., Falcioni R., Demattê J.A. The Brazilian Soil Spectral Library data opening. Dokuchaev Soil Bulletin. 2024;(119):261-305. https://doi.org/10.19047/0136-1694-2024-119-261-305