Preview

Бюллетень Почвенного института имени В.В. Докучаева

Расширенный поиск

Глобальные тренды в исследованиях на основе модели RUSLE: библиометрический анализ с использованием R Biblioshiny и VOSviewer

https://doi.org/10.19047/0136-1694-2025-125-293-327

Аннотация

Эрозия почвы – неизбежный естественный процесс, представляющий серьезную угрозу плодородию почв и управлению земельными ресурсами во всем мире. Основной целью данного исследования был тщательный библиометрический анализ исследований, посвященных широко используемой модели RUSLE для моделирования эрозии почвы, с целью выявления основных тенденций в исследованиях, значимых вкладов и существующих пробелов в знаниях. Для исследования были отобраны статьи на английском языке, опубликованные в базе данных Scopus в период с 1987 по 2024 гг. Анализ был сосредоточен на таких показателях, как наиболее продуктивный год, журналы, авторы, ключевые слова, темы, страны, аффилиации и цитирования. В процессе анализа использовались такие инструменты, как R Biblioshiny, VOSviewer и mapchart.net. Результаты показали, что 2023 г. стал годом с максимальным количеством публикаций по этой теме, а ведущими журналами были Environmental Earth Sciences и Modeling Earth Systems and Environment. Ренард К.Г. и Ли И. стали авторами, опубликовавшими наибольшее число статей, а в поиске чаще всего употреблялось словосочетание “эрозия почвы”. Китай и Индия вышли на первое место, что свидетельствует о более выраженных эрозионных процессах в них по сравнению с другими странами. Кроме того, установлено, что развитие исследований с помощью модели RUSLE можно разделить на три этапа: начальная фаза ограниченного использования (1987–1996 гг.); фаза устойчивого роста (1997–2014 гг.), обусловленная интеграцией ГИС и дистанционного зондирования; и высокопродуктивная фаза (2015 г. – по настоящее время), характеризующаяся технологическим прогрессом и ростом популярности модели во всем мире, особенно в 2023 г. Эти результаты демонстрируют, как возрастает важность современных технологий в повышении точности и масштабируемости моделей эрозии почв. Данный библиометрический анализ предоставляет интерес и дополнительную информацию для будущих исследований с целью развития устойчивого земледелия и эффективного управления земельными ресурсами, методов ведения сельского хозяйства, направленных на предотвращение деградации земель.

Об авторах

M. Kholmurodova
Institute of Fundamental and Applied Research, National Research University TIIAME
Узбекистан

Madinabonu Kholmurodova.

39A Kori Niyoziy, Tashkent 100000



M. Juliev
Institute of Fundamental and Applied Research, National Research University TIIAME; Turin Polytechnic University in Tashkent
Узбекистан

Mukhiddin Juliev.

39A Kori Niyoziy, Tashkent 100000; 17 Little Ring Road Str., Tashkent 100095



Sh. Bakhodirova
Tashkent State Technical University named after Islam Karimov
Узбекистан

2 University Str., Tashkent 100095



B. Abdikairov
Institute of Agriculture and Agrotechnologies of Karakalpakstan
Узбекистан

Bekmurat Abdikairov.

Abdametov Str., Nukus 230109



I. Israilov
Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University
Узбекистан

39A Kori Niyoziy, Tashkent 100000



Ja. Rashidov
Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University
Узбекистан

39A Kori Niyoziy, Tashkent 100000



Список литературы

1. Abdelsamie E.A., Abdellatif M.A., Hassan F.O., El Baroudy A.A., Mohamed E.S., Kucher D.E., Shokr M.S., Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones, Agriculture, 2022, Vol. 13, No. 1, 35.

2. Abdi B., Kolo K., Shahabi H., Soil erosion and degradation assessment integrating multi-parametric methods of RUSLE model, RS, and GIS in the Shaqlawa agricultural area, Kurdistan Region, Iraq. Environ. Monit. Assess., 2023,195, 1149.

3. Abdikairov B., Juliev M., Kholmurodova M., Analyses and assessment of soil salinity modeling: review of papers from Scopus database, J. Geol. Geogr. Geoecology, 2024, No. 33, pp. 647–661.

4. Aiello A., Adamo M., Canora F., Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy, CATENA, 2015, Vol. 131, pp. 174–185.

5. Al Shoumik B.A., Khan Md.Z., Islam Md.S., Soil erosion estimation by RUSLE model using GIS and remote sensing techniques: A case study of the tertiary hilly regions in Bangladesh from 2017 to 2021, Environ. Monit. Assess., 2023, Vol. 195, 1096.

6. Aldiansyah S., Wardani F., Spatiotemporal dynamic of soil erosion in the Roraya River Basin based on RUSLE model and Google Earth Engine, J. Hydroinformatics, 2024, Vol. 26, pp. 1273–1294.

7. Alewell C., Borrelli P., Meusburger K., Panagos P., Using the USLE: Chances, challenges and limitations of soil erosion modelling, Int. Soil Water Conserv. Res., 2019, Vol. 7, pp. 203–225.

8. Al-hasn R., Alghamaz F., Dikkeh M., Idriss Y., Water soil erosion modeling with RUSLE, GIS & remote sensing: A case study of the AL-Sanaoubar River basin (Syria), J. Saudi Soc. Agric. Sci., 2024, pp. 474–484.

9. Amsalu T., Mengaw A., GIS Based Soil Loss Estimation Using RUSLE Model: The Case of Jabi Tehinan Woreda, ANRS, Ethiopia. Nat. Resour., 2014, Vol. 05, pp. 616–626.

10. Benavidez R., Jackson B., Maxwell D., Norton K., A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates, Hydrol. Earth Syst. Sci., 2018a, Vol. 22, pp. 6059–6086.

11. Benavidez R., Jackson B., Maxwell D., Norton K., A review of the (Revised) Universal Soil Loss Equation (R/USLE): with a view to increasing its global applicability and improving soil loss estimates, Hydrology and Earth System Sciences, 2018b, Vol. 22, Iss. 11, pp. 6059–6086.

12. Benkobi L., Trlica M.J., Smith J.L., Evaluation of a Refined Surface Cover Subfactor for Use in RUSLE, J. Range Manag., 1994, Vol. 47, 74.

13. Bensekhria A., Bouhata R., Assessment and Mapping Soil Water Erosion Using RUSLE Approach and GIS Tools: Case of Oued el-Hai Watershed, Aurès West, Northeastern of Algeria, ISPRS Int. J. Geo-Inf., 2022, Vol. 11, Article 84, DOI: https://doi.org/10.3390/ijgi11020084.

14. Borrelli P., Alewell C., Alvarez P., Anache J.A.A., Baartman J., Ballabio C., Bezak N., Biddoccu M., Cerdà A., Chalise D., Chen S., Chen W., De Girolamo A.M., Gessesse G.D., Deumlich D., Diodato N., Efthimiou N., Erpul G., Fiener P., Freppaz M., Gentile F., Gericke A., Haregeweyn N., Hu B., Jeanneau A., Kaffas K., Kiani-Harchegani M., Villuendas I.L., Li C., Lombardo L., López-Vicente M., Lucas-Borja M.E., Märker M., Matthews F., Miao C., Mikoš M., Modugno S., Möller M., Naipal V., Nearing M., Owusu S., Panday D., Patault E., Patriche C.V., Poggio L., Portes R., Quijano L., Rahdari M.R., Renima M., Ricci G.F., Rodrigo-Comino J., Saia S., Samani A.N., Schillaci C., Syrris V., Kim H.S., Spinola D.N., Oliveira P.T., Teng H., Thapa R., Vantas K., Vieira D., Yang J.E., Yin S., Zema D.A., Zhao G., Panagos P., Soil erosion modelling: A global review and statistical analysis, Sci. Total Environ., 2021, Vol. 780, 146494.

15. Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Oost K.V., Montanarella L., Panagos P., An assessment of the global impact of 21st century land use change on soil erosion, Nat. Commun., 2017, Vol. 8, 2013.

16. Colavizza G., Hrynaszkiewicz I., Staden I., Whitaker K., McGillivray B., The citation advantage of linking publications to research data, PLOS ONE, 2020, Vol. 15, e0230416.

17. Das S., Deb P., Bora P.K., Katre P., Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India, Sustainability, 2020, Vol. 13, 232.

18. Djanpulatova Z.A., Juliev M.K., Abdikairov B.E., Kholmurodova M.D., Turdalieva S.R., Khadjieva Z.B., Ecosystem services in achieving sdgs: a bibliometric overview 2015-2024, Appl. Ecol. Environ. Res., 2025, Vol. 23, pp. 6223–6246.

19. Ezeh C.U., Igwe O., Asare M.Y., Ndulue D.C., Ayadiuno R.U., Preko K., A review of soil erosion modeling in Nigeria using the Revised Universal Soil Loss Equation model, Agrosystems Geosci. Environ., 2024, Vol. 7, e20471.

20. Ganasri B.P., Ramesh H., Assessment of soil erosion by RUSLE model using remote sensing and GIS – A case study of Nethravathi Basin, Geosci. Front., 2016, Vol. 7, pp. 953–961.

21. Getachew B., Manjunatha B.R., Bhat G.H., Assessing current and projected soil loss under changing land use and climate using RUSLE with Remote sensing and GIS in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia, Egypt. J. Remote Sens. Space Sci., 2021, Vol. 24, pp. 907–918.

22. Ghosal K., Das Bhattacharya S., A Review of RUSLE Model, J. Indian Soc. Remote Sens., 2020a, Vol. 48, pp. 689–707.

23. Hulland J., Bibliometric reviews – some guidelines, J. Acad. Mark. Sci., 2024, Vol. 52, pp. 935–938.

24. Islam Md.R., Imran H.M., Islam Md.R., Saha G.C., A RUSLE-based comprehensive strategy to assess soil erosion in a riverine country, Bangladesh, Environ. Earth Sci., 2024, Vol. 83, 162.

25. Ji C., Cao Y., Li X., Pei X., Sun B., Yang X., Zhou W., A review of the satellite remote sensing techniques for assessment of runoff and sediment in soil erosion, J. Hydrol. Hydromech., 2024, Vol. 72, pp. 252–267.

26. Jodhani K.H., Patel D., Madhavan N., Singh S.K., Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India, Water Conserv. Sci. Eng., 2023, Vol. 8, Article 49, DOI: https://doi.org/10.1007/s41101-023-00223-x.

27. Juliev M., Abdikairov B., Kholmurodova M., Djanpulatova Z., Mingboyeva M., Makhmudova M., Mapping the Landscape: A Bibliometric Analysis of Digital Education Research, E3S Web Conf., 2024, Vol. 590, 03009.

28. Juliev M., Kholmurodova M., Abdikairov B., Abuduwaili J., A comprehensive review of soil erosion research in Central Asian countries (1993–2022) based on the Scopus database, Soil Water Res., 2024, Vol. 19(4), pp. 244–256, DOI: https://doi.org/10.17221/82/2024-SWR.

29. Juliev M., Kholmurodova M., Gafurova L., Khoshjanova K., Khomidov A., Agzamova I., Normatova N., Gulyamov G., Muratova M., Gulamkadirova M., Modeling of soil erosion based on geospatial techniques and the RUSLE model for the Ugam Chatkal National Park, Uzbekistan, J. Geol. Geogr. Geoecology, 2024, Vol. 33, pp. 485–494.

30. Kouli M., Soupios P., Vallianatos F., Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece, Environ. Geol., 2009, Vol. 57, pp. 483–497.

31. Krymskaya A.S., The Bibliometrics of Bibliometrics as a New Area of Research, Sci. Tech. Inf. Process., 2023, Vol. 50, pp. 286–291.

32. Kumar M., Sahu A.P., Sahoo N., Dash S.S., Raul S.K., Panigrahi B., Global-scale application of the RUSLE model: a comprehensive review, Hydrol. Sci. J., 2022a, Vol. 67, pp. 806–830.

33. Lai J., Li J., Liu L., Predicting Soil Erosion Using RUSLE and GeoSOS-FLUS Models: A Case Study in Kunming, China, Forests, 2024, Vol. 15, 1039.

34. Makinde E.O., Oyebanji E.I., The Application of Remote Sensing and GIS Technology to Erosion Risk Mapping, Econ. Sustain. Dev. Energy Int. Conf., 2018, 1398.

35. Masroor M., Sajjad H., Rehman S., Singh R., Hibjur Rahaman M., Sahana M., Ahmed R., Avtar R., Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India, Geosci. Front., 2022, Vol. 13(2), Article 101312, DOI: https://doi.org/10.1016/j.gsf.2021.101312.

36. Mekonnen E., Kebede A., Asfaw S., Feyissa S., Optimizing soil erosion estimates of RUSLE model by analyzing land use/cover dynamics in upper Awash River Basin, Central Ethiopia, Geomat. Nat. Hazards Risk, 2023, Vol. 14(1), Article 2257363, DOI: https://doi.org/10.1080/19475705.2023.2257363.

37. Negese A., Critical oversights of remote sensing-based RUSLE cover and management (C) factor estimation in Ethiopia: A review, Remote Sens. Appl. Soc. Environ., 2024, Vol. 33, 101089.

38. Nizar A., Badimela U., Manohar C., Kamaraj J., Ganugapenta S., Nadimikeri J., Krishnan A., Assessment of soil erosion by integrating RUSLE-SDR-TLA model in Cauvery River basin, India, Environ. Earth Sci., 2024, Vol. 83, 549.

39. Oudchaira S., Rhoujjati A., Hanich L., EL Hachimi M.L., Evaluating soil loss and sediment yield for sustainable management of the Hassan II dam within Morocco’s Upper Moulouya watershed using RUSLE model and GIS, Environ. Earth Sci., 2024, Vol. 83, Article 210, DOI: https://doi.org/10.1007/s12665-024-11518-0.

40. Pal S.C., Chakrabortty R., Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model, Adv. Space Res., 2019, Vol. 64, pp. 352–377.

41. Pandey H.K., Singh V.K., Singh R.P., Singh S.K., Soil Loss Estimation Using RUSLE in Hard Rock Terrain: a Case Study of Bundelkhand, India, Water Conserv. Sci. Eng., 2023, Vol. 8, 55.

42. Papaiordanidis S., Gitas I., Katagis T., Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in Google Earth Engine (GEE) cloud-based platform, Dokuchaev Soil Bulletin, 2019, Vol. 100, pp. 36–52, DOI: https://doi.org/10.19047/0136-1694-2019-100-36-52.

43. Paul S.S., Li J., Li Y., Shen L., Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm, Geocarto Int., 2021, Vol. 36, pp. 361–375.

44. Pennock D.J., Soil erosion: the greatest challenge for sustainable soil management. Rome, Italy: Food and Agriculture Organization of the United Nations, 2019.

45. Phinzi K., Ngetar N.S., The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review, Int. Soil Water Conserv. Res., 2019, Vol. 7, pp. 27–46.

46. Renard K.G., Ferreira V.A., RUSLE model description and database sensitivity, J. Environ. Qual., 1993, Vol. 22, pp. 458–466.

47. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., RUSLE: revised universal soil loss equation, J. Soil Water Conserv., 1991, Vol. 46, pp. 30–33.

48. Renard K.G., Foster G.R., Yoder D.C., McCool D.K., RUSLE revisited: status, questions, answers, and the future, J. Soil Water Conserv., 1994, Vol. 49, pp. 213–220.

49. Renard K.G., Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), Washington, D.C., 1997.

50. Renard K.G., Yoder D.C., Lightle D.T., Dabney S.M., Universal Soil Loss Equation and Revised Universal Soil Loss Equation, Handb. of Erosion Model. John Wiley and Sons., 2011, pp. 135–167.

51. Shi Z.H., Cai C.F., Ding S.W., Wang T.W., Chow T.L., Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China, CATENA, 2004, Vol. 55, pp. 33–48.

52. Singh M.C., Sur K., Al-Ansari N., Arya P.K., Verma V.K., Malik A., GIS integrated RUSLE model-based soil loss estimation and watershed prioritization for land and water conservation aspects, Front. Environ. Sci., 2023, Vol. 11, 1136243.

53. Singh S., Kansal M.L., Sub-basin prioritisation using RUSLE in a Mountainous River Basin of Uttarakhand (India), Environ. Dev. Sustain., 2023, Vol. 26, pp. 6851–6877.

54. Singh S.K., Influence of anthropogenic activities on landslide susceptibility: A case study in Solan district, Himachal Pradesh, India, J. Mt. Sci., 2023, Vol. 20, pp. 429–447.

55. Tang Q., Xu Y., Bennett S.J., Li Y., Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China, Environ. Earth Sci., 2015, Vol. 73, pp. 1715–1724.

56. Teng H., Liang Z., Chen S., Liu Y., Viscarra Rossel R.A., Chappell A., Yu W., Shi Z., Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models, Sci. Total Environ., 2018, Vol. 635, pp. 673–686.

57. Thomas J., Joseph S., Thrivikramji K.P., Estimation of soil erosion in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function, Int. Soil Water Conserv. Res., 2018, Vol. 6, pp. 111–122.

58. Wang H., Bai Y., Man X., Tang Z., Zhang S., Improved RUSLE model to simulate the effect of slope forest area on soil and water conservation, Water Supply, 2023, Vol. 23, pp. 2799–2813.

59. Wen X., Zhen L., Jiang Q., Xiao Y., A global review of the development and application of soil erosion control techniques, Environ. Res. Lett., 2023, Vol. 18, 033003.

60. Zeng C., Wang S., Bai X., Li Y., Tian Y., Li Y., Wu L., Luo G., Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS, Solid Earth., 2017, Vol. 8, pp. 721–736.


Рецензия

Для цитирования:


Kholmurodova M., Juliev M., Bakhodirova Sh., Abdikairov B., Israilov I., Rashidov J. Глобальные тренды в исследованиях на основе модели RUSLE: библиометрический анализ с использованием R Biblioshiny и VOSviewer. Бюллетень Почвенного института имени В.В. Докучаева. 2025;(125):293-327. https://doi.org/10.19047/0136-1694-2025-125-293-327

For citation:


Kholmurodova M., Juliev M., Bakhodirova Sh., Abdikairov B., Israilov I., Rashidov J. Global research trends on RUSLE model: Bibliometric analysis using R Biblioshiny and VOSviewer. Dokuchaev Soil Bulletin. 2025;(125):293-327. https://doi.org/10.19047/0136-1694-2025-125-293-327

Просмотров: 17


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)