Global research trends on RUSLE model: Bibliometric analysis using R Biblioshiny and VOSviewer
https://doi.org/10.19047/0136-1694-2025-125-293-327
Abstract
Soil erosion is an unavoidable natural phenomenon that significantly endangers soil fertility and global land management. The primary objective of this study was to perform a thorough bibliometric analysis of research pertaining to the extensively utilized RUSLE model for soil erosion modeling, aiming to identify significant research trends, impactful contributions, and existing knowledge gaps. This study selected articles published in English from 1987 to 2024 in the Scopus database. The analysis centered on indicators including the most productive year, journals, authors, keywords, topics, countries, affiliations, and citations. We used R Biblioshiny, VOSviewer, and mapchart.net to help us with the analysis. The results showed that 2023 was the best year for publications on this topic, with Environmental Earth Sciences and Modeling Earth Systems and Environment being the top journals. Renard K.G. and Li Y. were the authors, who wrote the most papers, and “soil erosion” was the word that was used the most. China and India also came out on top, which shows that they are more affected by erosion than other countries. Furthermore, the progression of RUSLE research has been identified as occurring in three distinct phases: an initial limited phase (1987–1996), a phase of steady growth (1997–2014) propelled by the integration of GIS and remote sensing, and a highly productive phase (2015– till present moment) characterized by technological advancements and heightened global awareness, especially in 2023. These results show how modern technologies are becoming more important for making soil erosion models more accurate and scalable. This bibliometric analysis gives a full picture of how soil erosion research is changing around the world. It gives useful information for future research and supports sustainable land management and farming practices that aim to stop land degradation.
About the Authors
M. KholmurodovaUzbekistan
Madinabonu Kholmurodova.
39A Kori Niyoziy, Tashkent 100000
M. Juliev
Uzbekistan
Mukhiddin Juliev.
39A Kori Niyoziy, Tashkent 100000; 17 Little Ring Road Str., Tashkent 100095
Sh. Bakhodirova
Uzbekistan
2 University Str., Tashkent 100095
B. Abdikairov
Uzbekistan
Bekmurat Abdikairov.
Abdametov Str., Nukus 230109
I. Israilov
Uzbekistan
39A Kori Niyoziy, Tashkent 100000
Ja. Rashidov
Uzbekistan
39A Kori Niyoziy, Tashkent 100000
References
1. Abdelsamie E.A., Abdellatif M.A., Hassan F.O., El Baroudy A.A., Mohamed E.S., Kucher D.E., Shokr M.S., Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones, Agriculture, 2022, Vol. 13, No. 1, 35.
2. Abdi B., Kolo K., Shahabi H., Soil erosion and degradation assessment integrating multi-parametric methods of RUSLE model, RS, and GIS in the Shaqlawa agricultural area, Kurdistan Region, Iraq. Environ. Monit. Assess., 2023,195, 1149.
3. Abdikairov B., Juliev M., Kholmurodova M., Analyses and assessment of soil salinity modeling: review of papers from Scopus database, J. Geol. Geogr. Geoecology, 2024, No. 33, pp. 647–661.
4. Aiello A., Adamo M., Canora F., Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy, CATENA, 2015, Vol. 131, pp. 174–185.
5. Al Shoumik B.A., Khan Md.Z., Islam Md.S., Soil erosion estimation by RUSLE model using GIS and remote sensing techniques: A case study of the tertiary hilly regions in Bangladesh from 2017 to 2021, Environ. Monit. Assess., 2023, Vol. 195, 1096.
6. Aldiansyah S., Wardani F., Spatiotemporal dynamic of soil erosion in the Roraya River Basin based on RUSLE model and Google Earth Engine, J. Hydroinformatics, 2024, Vol. 26, pp. 1273–1294.
7. Alewell C., Borrelli P., Meusburger K., Panagos P., Using the USLE: Chances, challenges and limitations of soil erosion modelling, Int. Soil Water Conserv. Res., 2019, Vol. 7, pp. 203–225.
8. Al-hasn R., Alghamaz F., Dikkeh M., Idriss Y., Water soil erosion modeling with RUSLE, GIS & remote sensing: A case study of the AL-Sanaoubar River basin (Syria), J. Saudi Soc. Agric. Sci., 2024, pp. 474–484.
9. Amsalu T., Mengaw A., GIS Based Soil Loss Estimation Using RUSLE Model: The Case of Jabi Tehinan Woreda, ANRS, Ethiopia. Nat. Resour., 2014, Vol. 05, pp. 616–626.
10. Benavidez R., Jackson B., Maxwell D., Norton K., A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates, Hydrol. Earth Syst. Sci., 2018a, Vol. 22, pp. 6059–6086.
11. Benavidez R., Jackson B., Maxwell D., Norton K., A review of the (Revised) Universal Soil Loss Equation (R/USLE): with a view to increasing its global applicability and improving soil loss estimates, Hydrology and Earth System Sciences, 2018b, Vol. 22, Iss. 11, pp. 6059–6086.
12. Benkobi L., Trlica M.J., Smith J.L., Evaluation of a Refined Surface Cover Subfactor for Use in RUSLE, J. Range Manag., 1994, Vol. 47, 74.
13. Bensekhria A., Bouhata R., Assessment and Mapping Soil Water Erosion Using RUSLE Approach and GIS Tools: Case of Oued el-Hai Watershed, Aurès West, Northeastern of Algeria, ISPRS Int. J. Geo-Inf., 2022, Vol. 11, Article 84, DOI: https://doi.org/10.3390/ijgi11020084.
14. Borrelli P., Alewell C., Alvarez P., Anache J.A.A., Baartman J., Ballabio C., Bezak N., Biddoccu M., Cerdà A., Chalise D., Chen S., Chen W., De Girolamo A.M., Gessesse G.D., Deumlich D., Diodato N., Efthimiou N., Erpul G., Fiener P., Freppaz M., Gentile F., Gericke A., Haregeweyn N., Hu B., Jeanneau A., Kaffas K., Kiani-Harchegani M., Villuendas I.L., Li C., Lombardo L., López-Vicente M., Lucas-Borja M.E., Märker M., Matthews F., Miao C., Mikoš M., Modugno S., Möller M., Naipal V., Nearing M., Owusu S., Panday D., Patault E., Patriche C.V., Poggio L., Portes R., Quijano L., Rahdari M.R., Renima M., Ricci G.F., Rodrigo-Comino J., Saia S., Samani A.N., Schillaci C., Syrris V., Kim H.S., Spinola D.N., Oliveira P.T., Teng H., Thapa R., Vantas K., Vieira D., Yang J.E., Yin S., Zema D.A., Zhao G., Panagos P., Soil erosion modelling: A global review and statistical analysis, Sci. Total Environ., 2021, Vol. 780, 146494.
15. Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Oost K.V., Montanarella L., Panagos P., An assessment of the global impact of 21st century land use change on soil erosion, Nat. Commun., 2017, Vol. 8, 2013.
16. Colavizza G., Hrynaszkiewicz I., Staden I., Whitaker K., McGillivray B., The citation advantage of linking publications to research data, PLOS ONE, 2020, Vol. 15, e0230416.
17. Das S., Deb P., Bora P.K., Katre P., Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India, Sustainability, 2020, Vol. 13, 232.
18. Djanpulatova Z.A., Juliev M.K., Abdikairov B.E., Kholmurodova M.D., Turdalieva S.R., Khadjieva Z.B., Ecosystem services in achieving sdgs: a bibliometric overview 2015-2024, Appl. Ecol. Environ. Res., 2025, Vol. 23, pp. 6223–6246.
19. Ezeh C.U., Igwe O., Asare M.Y., Ndulue D.C., Ayadiuno R.U., Preko K., A review of soil erosion modeling in Nigeria using the Revised Universal Soil Loss Equation model, Agrosystems Geosci. Environ., 2024, Vol. 7, e20471.
20. Ganasri B.P., Ramesh H., Assessment of soil erosion by RUSLE model using remote sensing and GIS – A case study of Nethravathi Basin, Geosci. Front., 2016, Vol. 7, pp. 953–961.
21. Getachew B., Manjunatha B.R., Bhat G.H., Assessing current and projected soil loss under changing land use and climate using RUSLE with Remote sensing and GIS in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia, Egypt. J. Remote Sens. Space Sci., 2021, Vol. 24, pp. 907–918.
22. Ghosal K., Das Bhattacharya S., A Review of RUSLE Model, J. Indian Soc. Remote Sens., 2020a, Vol. 48, pp. 689–707.
23. Hulland J., Bibliometric reviews – some guidelines, J. Acad. Mark. Sci., 2024, Vol. 52, pp. 935–938.
24. Islam Md.R., Imran H.M., Islam Md.R., Saha G.C., A RUSLE-based comprehensive strategy to assess soil erosion in a riverine country, Bangladesh, Environ. Earth Sci., 2024, Vol. 83, 162.
25. Ji C., Cao Y., Li X., Pei X., Sun B., Yang X., Zhou W., A review of the satellite remote sensing techniques for assessment of runoff and sediment in soil erosion, J. Hydrol. Hydromech., 2024, Vol. 72, pp. 252–267.
26. Jodhani K.H., Patel D., Madhavan N., Singh S.K., Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India, Water Conserv. Sci. Eng., 2023, Vol. 8, Article 49, DOI: https://doi.org/10.1007/s41101-023-00223-x.
27. Juliev M., Abdikairov B., Kholmurodova M., Djanpulatova Z., Mingboyeva M., Makhmudova M., Mapping the Landscape: A Bibliometric Analysis of Digital Education Research, E3S Web Conf., 2024, Vol. 590, 03009.
28. Juliev M., Kholmurodova M., Abdikairov B., Abuduwaili J., A comprehensive review of soil erosion research in Central Asian countries (1993–2022) based on the Scopus database, Soil Water Res., 2024, Vol. 19(4), pp. 244–256, DOI: https://doi.org/10.17221/82/2024-SWR.
29. Juliev M., Kholmurodova M., Gafurova L., Khoshjanova K., Khomidov A., Agzamova I., Normatova N., Gulyamov G., Muratova M., Gulamkadirova M., Modeling of soil erosion based on geospatial techniques and the RUSLE model for the Ugam Chatkal National Park, Uzbekistan, J. Geol. Geogr. Geoecology, 2024, Vol. 33, pp. 485–494.
30. Kouli M., Soupios P., Vallianatos F., Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece, Environ. Geol., 2009, Vol. 57, pp. 483–497.
31. Krymskaya A.S., The Bibliometrics of Bibliometrics as a New Area of Research, Sci. Tech. Inf. Process., 2023, Vol. 50, pp. 286–291.
32. Kumar M., Sahu A.P., Sahoo N., Dash S.S., Raul S.K., Panigrahi B., Global-scale application of the RUSLE model: a comprehensive review, Hydrol. Sci. J., 2022a, Vol. 67, pp. 806–830.
33. Lai J., Li J., Liu L., Predicting Soil Erosion Using RUSLE and GeoSOS-FLUS Models: A Case Study in Kunming, China, Forests, 2024, Vol. 15, 1039.
34. Makinde E.O., Oyebanji E.I., The Application of Remote Sensing and GIS Technology to Erosion Risk Mapping, Econ. Sustain. Dev. Energy Int. Conf., 2018, 1398.
35. Masroor M., Sajjad H., Rehman S., Singh R., Hibjur Rahaman M., Sahana M., Ahmed R., Avtar R., Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India, Geosci. Front., 2022, Vol. 13(2), Article 101312, DOI: https://doi.org/10.1016/j.gsf.2021.101312.
36. Mekonnen E., Kebede A., Asfaw S., Feyissa S., Optimizing soil erosion estimates of RUSLE model by analyzing land use/cover dynamics in upper Awash River Basin, Central Ethiopia, Geomat. Nat. Hazards Risk, 2023, Vol. 14(1), Article 2257363, DOI: https://doi.org/10.1080/19475705.2023.2257363.
37. Negese A., Critical oversights of remote sensing-based RUSLE cover and management (C) factor estimation in Ethiopia: A review, Remote Sens. Appl. Soc. Environ., 2024, Vol. 33, 101089.
38. Nizar A., Badimela U., Manohar C., Kamaraj J., Ganugapenta S., Nadimikeri J., Krishnan A., Assessment of soil erosion by integrating RUSLE-SDR-TLA model in Cauvery River basin, India, Environ. Earth Sci., 2024, Vol. 83, 549.
39. Oudchaira S., Rhoujjati A., Hanich L., EL Hachimi M.L., Evaluating soil loss and sediment yield for sustainable management of the Hassan II dam within Morocco’s Upper Moulouya watershed using RUSLE model and GIS, Environ. Earth Sci., 2024, Vol. 83, Article 210, DOI: https://doi.org/10.1007/s12665-024-11518-0.
40. Pal S.C., Chakrabortty R., Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model, Adv. Space Res., 2019, Vol. 64, pp. 352–377.
41. Pandey H.K., Singh V.K., Singh R.P., Singh S.K., Soil Loss Estimation Using RUSLE in Hard Rock Terrain: a Case Study of Bundelkhand, India, Water Conserv. Sci. Eng., 2023, Vol. 8, 55.
42. Papaiordanidis S., Gitas I., Katagis T., Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in Google Earth Engine (GEE) cloud-based platform, Dokuchaev Soil Bulletin, 2019, Vol. 100, pp. 36–52, DOI: https://doi.org/10.19047/0136-1694-2019-100-36-52.
43. Paul S.S., Li J., Li Y., Shen L., Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm, Geocarto Int., 2021, Vol. 36, pp. 361–375.
44. Pennock D.J., Soil erosion: the greatest challenge for sustainable soil management. Rome, Italy: Food and Agriculture Organization of the United Nations, 2019.
45. Phinzi K., Ngetar N.S., The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review, Int. Soil Water Conserv. Res., 2019, Vol. 7, pp. 27–46.
46. Renard K.G., Ferreira V.A., RUSLE model description and database sensitivity, J. Environ. Qual., 1993, Vol. 22, pp. 458–466.
47. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., RUSLE: revised universal soil loss equation, J. Soil Water Conserv., 1991, Vol. 46, pp. 30–33.
48. Renard K.G., Foster G.R., Yoder D.C., McCool D.K., RUSLE revisited: status, questions, answers, and the future, J. Soil Water Conserv., 1994, Vol. 49, pp. 213–220.
49. Renard K.G., Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), Washington, D.C., 1997.
50. Renard K.G., Yoder D.C., Lightle D.T., Dabney S.M., Universal Soil Loss Equation and Revised Universal Soil Loss Equation, Handb. of Erosion Model. John Wiley and Sons., 2011, pp. 135–167.
51. Shi Z.H., Cai C.F., Ding S.W., Wang T.W., Chow T.L., Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China, CATENA, 2004, Vol. 55, pp. 33–48.
52. Singh M.C., Sur K., Al-Ansari N., Arya P.K., Verma V.K., Malik A., GIS integrated RUSLE model-based soil loss estimation and watershed prioritization for land and water conservation aspects, Front. Environ. Sci., 2023, Vol. 11, 1136243.
53. Singh S., Kansal M.L., Sub-basin prioritisation using RUSLE in a Mountainous River Basin of Uttarakhand (India), Environ. Dev. Sustain., 2023, Vol. 26, pp. 6851–6877.
54. Singh S.K., Influence of anthropogenic activities on landslide susceptibility: A case study in Solan district, Himachal Pradesh, India, J. Mt. Sci., 2023, Vol. 20, pp. 429–447.
55. Tang Q., Xu Y., Bennett S.J., Li Y., Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China, Environ. Earth Sci., 2015, Vol. 73, pp. 1715–1724.
56. Teng H., Liang Z., Chen S., Liu Y., Viscarra Rossel R.A., Chappell A., Yu W., Shi Z., Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models, Sci. Total Environ., 2018, Vol. 635, pp. 673–686.
57. Thomas J., Joseph S., Thrivikramji K.P., Estimation of soil erosion in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function, Int. Soil Water Conserv. Res., 2018, Vol. 6, pp. 111–122.
58. Wang H., Bai Y., Man X., Tang Z., Zhang S., Improved RUSLE model to simulate the effect of slope forest area on soil and water conservation, Water Supply, 2023, Vol. 23, pp. 2799–2813.
59. Wen X., Zhen L., Jiang Q., Xiao Y., A global review of the development and application of soil erosion control techniques, Environ. Res. Lett., 2023, Vol. 18, 033003.
60. Zeng C., Wang S., Bai X., Li Y., Tian Y., Li Y., Wu L., Luo G., Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS, Solid Earth., 2017, Vol. 8, pp. 721–736.
Review
For citations:
Kholmurodova M., Juliev M., Bakhodirova Sh., Abdikairov B., Israilov I., Rashidov J. Global research trends on RUSLE model: Bibliometric analysis using R Biblioshiny and VOSviewer. Dokuchaev Soil Bulletin. 2025;(125):293-327. https://doi.org/10.19047/0136-1694-2025-125-293-327





































