Microbiological indicators of soil carbon dynamics
https://doi.org/10.19047/0136-1694-2025-124-116-143
Abstract
Microorganisms play a key role in the dynamics of soil organic matter (SOM) stocks, redistributing carbon (C) among microbial biomass growth, respiration, polymer synthesis, and intracellular and extracellular enzymatic processes. This paper provides a review of microbiological indicators used to study the decomposition, transformation, and stabilization of SOM, as well as their application in modeling soil C dynamics. This study examines microbiological parameters of the carbon cycle, such as microbial biomass C, soil enzymatic activity, microbial necromass C, C use efficiency (CUE), basal respiration, and microbial community structure. Methods for determining these indicators, their interpretation, and examples of their application in mathematical models are discussed. Given that microbial necromass constitutes a significant portion of SOM and that CUE is a key parameter balancing C mineralization and stabilization, integrating microbiological data into predictive models can significantly improve their accuracy. Quantitative determination of microbiological indicators of the С cycle under various soil and ecological conditions is essential for studying the mechanisms of microbial transformation and stabilization of SOM.
Keywords
About the Author
M. V. SemenovFederal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
References
1. Blagodatskaya E.V., Semenov M.V., Yakushev A.V., Activity and biomass of soil microorganisms under changing environmental conditions, Moscow: Tov. Nauchn. Izd. KMK, 2016, 234 p.
2. Evdokimov I.V., Methods for determining the biomass of soil microorganisms, Russian Journal of Ecosystem Ecology, 2018, No. 3, pp. 1– 20, DOI: https://doi.org/10.21685/2500-0578-2018-3-5.
3. Zadorozhny A.N., Semenov M.V., Khodzhaeva A.K., Semenov V.M., Soil processes of production, consumption, and greenhouse gas emissions, Agrokhimiya, 2010, No. 10, pp. 75–92.
4. Ivanov A.L., Savin I.Yu., Stolbovoy V.S., Dukhanin Yu.A., Kozlov D.N., Bamatov I.M., Global climate and soil cover – implications for land use in Russia, Dokuchaev Soil Bulletin, 2021, No. 107, pp. 5–32, DOI: https://doi.org/10.19047/0136-1694-2021-107-5-32.
5. Kovalev I.V., Semenov V.M., Kovaleva N.O., Lebedeva T.N., Yakovleva V.M., Pautova N.B., Estimation of the biogenicity and bioactivity of gleyed agrogray non-drained and drained soils, Eurasian Soil Science, 2021, Vol. 54, No. 7, pp. 1059–1067, DOI: https://doi.org/10.1134/S1064229321070073.
6. Kogut B.M., Semenov V.M., Estimation of soil saturation with organic carbon, Dokuchaev Soil Bulletin, 2020, No. 102, pp. 103–124, DOI: https://doi.org/10.19047/0136-1694-2020-102-103-124.
7. Lebedeva T.N., Sokolov D.A., Semenov M.V., Zinyakova N.B., Udal’tsov S.N., Semenov V.M., Organic carbon distribution between structural and process pools in the gray forest soil of different land use, Dokuchaev Soil Bulletin, 2024, No. 118, pp. 79–127, DOI: https://doi.org/10.19047/0136-1694-2024-118-79-127.
8. Ryzhova I.M., Romanenkov V.A., Stepanenko V.M., Modern development of models of soil organic matter dynamics (review), Moscow University Bulletin. Series 17. Soil Science, 2024, No. 4, pp. 122–129, DOI: https://doi.org/10.55959/MSU0137-0944-17-2024-79-4-122-129.
9. Semenov A.M., Bubnov I.A., Semenov V.M., Semenova E.V., Zelenev V.V., Semenova N.A., Daily Dynamics of Bacterial Numbers, CO2 Emissions from Soil and Relationships between Their Wavelike Fluctuations and Succession of the Microbial Community, Eurasian Soil Science, 2013, Vol. 46, No. 8, pp. 869–884, DOI: https://doi.org/10.1134/S1064229313080073.
10. Semenov V.M., Ivannikova L.A., Kuznetsova T.V., Semenova N.A., Khodzhaeva A.K., Biokinetic indication of the mineralizable pool of soil organic matter, Eurasian Soil Science, 2007, Vol. 40, No. 11, pp. 1208–1216, DOI: https://doi.org/10.1134/S1064229307110099.
11. Semenov V.M., Kogut B.M., Soil organic matter, Moscow: GEOS, 2015, 233 p.
12. Semenov V.M., Kogut B.M., Ivanov A.L., Soil carbon sequestration in agro-landscapes: the food imperative of the climate agenda, Dokuchaev Soil Bulletin, 2025, Vol. 124, “Soil Organic Matter”, pp. 10–69, DOI: https://doi.org/10.19047/0136-1694-2025-124-10-69.
13. Semenov V.M., Pautova N.B., Lebedeva T.N., Khromychkina D.P., Semenova N.A., Lopes de Gerenyu V.O., Plant residues decomposition and formation of active organic matter in soil incubation experiments, Eurasian Soil Science, 2019, Vol. 52, No. 10, pp. 1183–1194.
14. Semenov M.V., Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects, Biology Bulletin Reviews, 2021, Vol. 11, No. 1, pp. 40–53, DOI: https://doi.org/10.1134/S2079086421010084.
15. Abramoff R.Z., Davidson E.A., Finzi A.C., A parsimonious modular approach to building a mechanistic below-ground carbon and nitrogen model, Journal of Geophysical Research: Biogeosciences, 2017, Vol. 122, No. 9, pp. 2418–2434, DOI: https://doi.org/10.1002/2017JG003796.
16. Abramoff R.Z., Guenet B., Zhang H., Georgiou K., Xu X., Viscarra Rossel R.A. et al., Improved global-scale predictions of soil carbon stocks with Millennial Version 2, Soil Biology and Biochemistry, 2022, Vol. 164, pp. 108466, DOI: https://doi.org/10.1016/j.soilbio.2021.108466.
17. Abramoff R.Z., Xu X., Hartman M., O’Brien S., Feng W., Davidson E. et al., The Millennial model: In search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, 2018, Vol. 137, No. 1, pp. 51–71, DOI: https://doi.org/10.1007/s10533-017-0409-7.
18. Angst G., Mueller K.E., Nierop K.G., Simpson M.J. Plant-or microbialderived? A review on the molecular composition of stabilized soil organic matter, Soil Biology and Biochemistry, 2021, Vol. 156, pp. 108189.
19. Arneth A., Denton F., Agus F., Elbehri A., Erb K.H., Elasha B.O., Rahimi M., Rounsevell M., Spence A., Valentini R., Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Intergovernmental Panel on Climate Change (IPCC), 2019, pp. 1–98.
20. Baldrian P., Microbial enzyme-catalyzed processes in soils and their analysis, Plant, Soil and Environment, 2009, Vol. 55, pp. 370–378, DOI: https://doi.org/10.17221/134/2009-PSE.
21. Baldrian P., The known and the unknown in soil microbial ecology, FEMS microbiology ecology, 2019, Vol. 95, fiz005, DOI: https://doi.org/10.1093/femsec/fiz005.
22. Blagodatskaya E., Kuzyakov Y., Active microorganisms in soil: critical review of estimation criteria and approaches, Soil Biology and Biochemistry, 2013, Vol. 67, pp. 192–211, DOI: https://doi.org/10.1016/j.soilbio.2013.08.024.
23. Bünemann E.K., Bongiorno G., Bai Z., Creamer R.E., De Deyn G., De Goede R., Fleskens L., Geissen V., Kuyper T.W., Mäder P., Pulleman M., Sukkel W., Willem van Groenigen J., Brussaard L., Soil quality – A critical review, Soil Biology and Biochemistry, 2018, Vol. 120, pp. 105–125, DOI: https://doi.org/10.1016/j.soilbio.2018.01.030.
24. Chandel A.K., Jiang L., Luo Y., Microbial models for simulating soil carbon dynamics: A review, Journal of Geophysical Research: Biogeosciences, 2023, Vol. 128(8), e2023JG007436, DOI: https://doi.org/10.1029/2023JG007436.
25. Coleman K., Jenkinson D.S., RothC-26.3 – A model for the turnover of carbon in soil, Evaluation of Soil Organic Matter Models, 1996, pp. 237–246, DOI: https://doi.org/10.1007/978-3-642-61094-3_17.
26. German D.P., Weintraub M.N., Grandy A.S., Lauber C.L., Rinkes Z.L., Allison S.D., Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies, Soil Biology and Biochemistry, 2011, Vol. 43(7), pp. 1387– 1397, DOI: https://doi.org/10.1016/j.soilbio.2011.03.017.
27. Guo X., Gao Q., Yuan M., Wang G., Zhou X., Feng J. et al., Geneinformed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming, Nature communications, 2020, Vol. 11, pp. 4897, DOI: https://doi.org/10.1038/s41467-020-18706-z.
28. Hoffland E., Kuyper T.W., Comans R.N.J., Creamer R.E., Ecofunctionality of organic matter in soils, Plant and Soil, 2020, Vol. 455, pp. 1– 22, DOI: https://doi.org/10.1007/s11104-020-04651-9.
29. Hu J., Cui Y., Manzoni S., Zhou S., Cornelissen J.H.C., Huang C., Schimel J., Kuzyakov Y., Microbial Carbon Use Efficiency and Growth Rates in Soil: Global Patterns and Drivers, Global Change Biology, 2025, Vol. 31(1), e70036, DOI: https://doi.org/10.1111/gcb.70036.
30. Joergensen R.G., Amino sugars as specific indices for fungal and bacterial residues in soil, Biology and Fertility of Soils, 2018, Vol. 54, pp. 559–568, DOI: https://doi.org/10.1007/s00374-018-1288-3.
31. Joergensen R.G., Mueller T., The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value, Soil Biology and Biochemistry, 1996, Vol. 28(1), pp. 33–37, DOI: https://doi.org/10.1016/0038-0717(95)00101-8.
32. Joergensen R.G., Wichern F., Alive and kicking: why dormant soil microorganisms matter, Soil Biology and Biochemistry, 2018, Vol. 116, pp. 419–430, DOI: https://doi.org/10.1016/j.soilbio.2017.10.022.
33. Kallenbach C.M., Wallenstein M.D., Schipanski M.E., Grandy A.S., Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward, Frontiers in Microbiology, 2019, Vol. 10, pp. 1146, DOI: https://doi.org/10.3389/fmicb.2019.01146.
34. Kleber M., What is recalcitrant soil organic matter? Environmental Chemistry, 2010, Vol. 7(4), pp. 320–332, DOI: https://doi.org/10.1071/EN10006.
35. Lawrence C.R., Neff J.C., Schimel J.P., Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment, Soil Biology and Biochemistry, 2009, Vol. 41(9), pp. 1923–1934, DOI: https://doi.org/10.1016/j.soilbio.2009.06.016.
36. Lehmann J., Kleber M., The contentious nature of soil organic matter, Nature, 2015, Vol. 528(7580), pp. 60–68, DOI: https://doi.org/10.1038/nature16069.
37. Li C., Frolking S., Harriss R., Modeling carbon biogeochemistry in agricultural soils, Global Biogeochemical Cycles, 1994, Vol. 8(3), pp. 237– 254, DOI: https://doi.org/10.1029/94GB00767.
38. Li H., Yang S., Semenov M.V., Yao F., Ye J., Bu R. et al., Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community, Global Change Biology, 2021, Vol. 27(12), pp. 2763–2779, DOI: https://doi.org/10.1111/gcb.15593.
39. Liang C., Amelung W., Lehmann J., Kastner M., Quantitative assessment of microbial necromass contribution to soil organic matter, Global Change Biology, 2019, Vol. 25, pp. 3578–3590, DOI: https://doi.org/10.1111/gcb.14781.
40. Liang C., Schimel J., Jastrow J., The importance of anabolism in microbial control over soil carbon storage, Nature Microbiology, 2017, Vol. 2, pp. 17105, DOI: https://doi.org/10.1038/nmicrobiol.2017.105.
41. Liptzin D., Norris C.E., Cappellazzi S.B., Mac Bean G., Cope M., Greub K.L., et al., An evaluation of carbon indicators of soil health in long-term agricultural experiments, Soil Biology and Biochemistry, 2022, Vol. 172, pp. 108708, DOI: https://doi.org/10.1016/j.soilbio.2022.108708.
42. Lützow M.V., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, European Journal of Soil Science, 2006, Vol. 57, pp. 426–445, DOI: https://doi.org/10.1111/j.1365-2389.2006.00809.x.
43. Malik A.A., Martiny J.B., Brodie E.L., Martiny A.C., Treseder K.K., Allison S.D., Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change, The ISME Journal, 2020, Vol. 14, pp. 1–9, DOI: https://doi.org/10.1038/s41396-019-0510-0.
44. Malik A.A., Puissant J., Goodall T., Allison S.D., Griffiths R.I., Soil microbial communities with greater investment in resource acquisition have lower growth yield, Soil Biology and Biochemistry, 2019, Vol. 132, pp. 36–39, DOI: https://doi.org/10.1016/j.soilbio.2019.01.025.
45. Manzoni S., Taylor P., Richter A., Porporato A., Ågren G.I., Environmental and stoichiometric controls on microbial carbon-use efficiency in soils, New Phytologist, 2012, Vol. 196, pp. 79–91.
46. Metze D., Schnecker J., Canarini A., Fuchslueger L., Koch B.J., Stone B.W. et al., Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions, Nature Communications, 2023, Vol. 14, pp. 5895, DOI: https://doi.org/10.1038/s41467-023-41524-y.
47. Nannipieri P., Giagnoni L., Renella G., Puglisi E., Ceccanti B., Masciandaro G., Fornasier F., Moscatelli M.C., Marinari S., Soil enzymology: classical and molecular approaches, Biology and Fertility of Soils, 2012, Vol. 48, pp. 743–762.
48. Nannipieri P., Ascher-Jenull J., Ceccherini M.T., Pietramellara G., Renella G., Schloter M., Beyond microbial diversity for predicting soil functions: A mini review, Pedosphere, 2020, Vol. 30, pp. 5–17, DOI: https://doi.org/10.1016/S1002-0160(19)60824-6.
49. Osburn E.D., McBride S.G., Bahram M., Strickland M.S., Global patterns in the growth potential of soil bacterial communities, Nature Communications, 2024, Vol. 15, pp. 6881, DOI: https://doi.org/10.1038/s41467-024-50382-1.
50. Piton G., Allison S.D., Bahram M., Hildebrand F., Martiny J.B., Treseder K.K., Martiny A.C., Life history strategies of soil bacterial communities across global terrestrial biomes, Nature Microbiology, 2023, Vol. 8, pp. 2093–2102, DOI: https://doi.org/10.1038/s41564-023-01465-0.
51. Prosser J.I., Dispersing misconceptions and identifying opportunities for the use of 'omics' in soil microbial ecology, Nature Reviews Microbiology, 2015, Vol. 13, pp. 439–446, DOI: https://doi.org/10.1038/nrmicro3468.
52. Rumpel C., Amiraslani F., Chenu C., Garcia Cardenas M., Kaonga M., Koutika L.-S., Ladha J., Madari B., Shirato Y., Smith P., Soudi B., Soussana J.-F., Whitehead D., Wollenberg E., The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy, Ambio, 2020, Vol. 49, pp. 350–360, DOI: https://doi.org/10.1007/s13280-019-01165-2.
53. Schimel J., Modeling ecosystem-scale carbon dynamics in soil: the microbial dimension, Soil Biology and Biochemistry, 2023, Vol. 178, pp. 108948, DOI: https://doi.org/10.1016/j.soilbio.2023.108948.
54. Schimel J.P., Schaeffer S.M., Microbial control over carbon cycling in soil, Frontiers in Microbiology, 2012, Vol. 3, pp. 348, DOI: https://doi.org/10.3389/fmicb.2012.00348.
55. Semenov M.V., Soil Bacteria, In: Encyclopedia of Soils in the Environment, Second Edition (Eds. Goss M., Oliver M.), Vol. 1, pp. 31–38, DOI: https://doi.org/10.1016/B978-0-12-822974-3.00095-1.
56. Semenov M.V., Zhelezova A.D., Ksenofontova N.A., Ivanova E.A., Nikitin D.A., Semenov V.M., Microbiological Indicators for Assessing the Effects of Agricultural Practices on Soil Health: A Review, Agronomy, 2025, Vol. 15, pp. 335, DOI: https://doi.org/10.3390/agronomy15020335.
57. Sistla S.A., Rastetter E.B., Schimel J.P., Responses of a tundra system to warming using SCAMPS: A stoichiometrically coupled, acclimating microbeplant-soil model, Ecological Monographs, 2014, Vol. 84, pp. 151–170, DOI: https://doi.org/10.1890/12-2119.1.
58. Sulman B.N., Phillips R.P., Oishi A.C., Shevliakova E., Pacala S.W., Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2, Nature Climate Change, 2014, Vol. 4, pp. 1099–1102, DOI: https://doi.org/10.1038/nclimate2436.
59. Tao F., Huang Y., Hungate B.A., Manzoni S., Frey S.D., Schmidt M.W. et al., Microbial carbon use efficiency promotes global soil carbon storage, Nature, 2023, Vol. 618, pp. 981–985, DOI: https://doi.org/10.1038/s41586-023-06042-3.
60. van Bruggen A.H., He M., Zelenev V.V., Semenov V.M., Semenov A.M., Semenova E.V., Kuznetsova T.V., Khodzaeva A.K., Kuznetsov A.M., Semenov M.V., Relationships between greenhouse gas emissions and cultivable bacterial populations in conventional, organic and long-term grass plots as affected by environmental variables and disturbances, Soil Biology and Biochemistry, 2017, Vol. 114, pp. 145–159, DOI: https://doi.org/10.1016/j.soilbio.2017.07.014.
61. Whalen E.D., Grandy A.S., Sokol N.W., Keiluweit M., Ernakovich J., Smith R.G., Frey S.D., Clarifying the evidence for microbial- and plantderived soil organic matter, and the path toward a more quantitative understanding, Global Change Biology, 2022, Vol. 28, pp. 7167–7185, DOI: https://doi.org/10.1111/gcb.16413.
62. Wieder W.R., Allison S.D., Davidson E.A., Georgiou K., Hararuk O., He Y. et al., Explicitly representing soil microbial processes in Earth system models, Global Biogeochemical Cycles, 2015, Vol. 29, pp. 1782–1800, DOI: https://doi.org/10.1002/2015GB005188.
63. Wieder W.R., Grandy A.S., Kallenbach C.M., Bonan G.B., Integrating microbial physiology and physicochemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, Biogeosciences, 2014, Vol. 11, pp. 3899–3917, DOI: https://doi.org/10.5194/bg-11-3899-2014.
64. Woolf D., Lehmann J., Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence, Scientific Reports, 2019, Vol. 9, pp. 6522, DOI: https://doi.org/10.1038/s41598-019-43026-8.
65. Zomer R.J., Bossio D.A., Sommer R. et al., Global Sequestration Potential of Increased Organic Carbon in Cropland Soils, Scientific Reports, 2017, Vol. 7, pp. 15554, DOI: https://doi.org/10.1038/s41598-017-15794-8.
Review
For citations:
Semenov M.V. Microbiological indicators of soil carbon dynamics. Dokuchaev Soil Bulletin. 2025;(124):116-143. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-116-143