This article demonstrates an approach to digital mapping of soil drainage in Vladimir Opolie controlled by topographic conditions. Topographic conditions of the key area are described by a digital terrain model and morphometric parameters with resolution of 30 m. The variety of soil drainage is represented by soil survey data of the RSFSR Goskomzem, which includes 170 soil observations with morphological characteristic of the degree of soil hydromorphism. Linear combination of the most significant morphometric parameters is calculated by the means of canonical discriminant analysis. This combination also interpreted as topographically induced soil drainage explains 70% of spatial variation of soil hydromorphism. Scores above 0.5 relate to gray forest soils of well drained moraine-erosional plains, gently and steep slopes of valleys. Scores below 0.5 relate to gleyic grey forest soils of shallow slopes of plains, deep valleys and depressions with poor soil drainage conditions.
The article considers the role of GPR in solving problems of soil science, as well as the accuracy of tracking soil horizons using the example of field data. The study of the current state of the issue has shown that there is significant variability in the electrophysical properties of different types of soil. In this case, the dielectric constant of the soil horizons can both increase and decrease with depth. This fact determines the need for parameterization of the soil profile in GPR studies to prevent errors. Based on a generalizing analysis of practical examples, it has been established that the error in determining individual soil horizons by a GPR is on average 2–10 cm, depending on the frequency of the GPR antenna and the structural features of the soil. Experimental and methodological work to substantiate the main conclusions was carried out to trace the soil horizons by the GPR method using the example of typical entic podzol located on the Zaonezhsky Peninsula (Republic of Karelia), the structure and composition of which were described in detail earlier. The survey was carried out by a georadar OKO-2 (Logis-Geotech, Russia) with an antenna unit with a central frequency of 400 MHz. Fieldwork on the study site was carried out along separate transects, according to the reference soil profile. A detailed analysis of the radargrams provided, first of all, tracking the base of the BC horizon. The results obtained showed that the thickness of the soil within the profile varies from 23 to 32 cm, and the average observation error was ± 3 cm. Besides, the influence on the recording of shungite shale fragments and the differentiation of moisture content in the soil horizons was revealed. The presence of shungite shale leads to the formation of diffracted waves and an increase in the amplitudes of the reflected signal, while an increase in humidity is characterized by a decrease in the velocities of the electromagnetic wave.
The work is devoted to the analysis of the regularities of the movement of charcoal particles in the ecosystems of the middle taiga, northern taiga and southern tundra experiencing the influence of fires. Since coniferous vegetation is subjected to intense combustion, fires often lead to cyclical changes in the vegetation cover. The process of burning leads to the forest litter damage, making the soil cover vulnerable to erosion. Intense fires affect the amount of pyrogenic material that can be stored for thousands of years under favorable conditions. The aim of the research was to estimate the influence of environmental factors on the use of carbonaceous particles in modern time series (from 1 to 119 years). The features of soils (particle size distribution, moisture content), relief features (presence of depressions), the effect of precipitation material after a fire, as well as features of combustible litter were considered. On the territory of the middle and northern taiga, in the Pechora-Ilychsky and Pinezhsky reserves, textural-differentiated and alpha-humus soils are considered. On the territory of the southern tundra, in the area of the settlement Zapolyarny, peat-gley soils are considered. It was revealed that the migration of coal to the depth of the soil profile depends to the greatest extent on the particle size distribution – for example, in more sandy soils, coals are scattered throughout the profile, and in clay soils they are concentrated above the first fine-textured horizon. The nature of the coals determines their shape and size, which depend on the type of burnt plant community. Communities with a scattered stand, dominated by lichens in the moss-lichen cover, burn with the formation of microparticles of coal or dispersed carbonaceous particles that easily move along the soil profile (up to the depth of 80 cm). Plant communities with more tree species in their composition, during combustion form large carbonaceous particles, which are often present in the newly formed litter. Charcoal migration is influenced by both the climatic zone and post-pyrogenic erosion. Thus, depending on the variety of environmental conditions, the speed and volume of movement of carbonaceous particles change significantly both when comparing different natural zones and within one zone. Four schemes have been developed for the motion of charcoal along the profile over time: uniformly diffused, unevenly diffused, barrier and turbation.
On the basis of detailed, conjugated, qualitative and quantitative analysis of clay and clastogenic minerals of the crust solonetz of the Volga region, the profile composition of minerals is calculated according to the content of a stable component. At the same time, the initial mineralogical homogeneity of the soil profile, determined by the method of a stable component – the content of К-feldspar in the profile, was adapted. Soil density indicators were not involved in the calculations. Profile calculations of minerals were carried out at the level of losses and increases of their percentage in genetic horizons relative to the rock, expressed in kg/100 kg of rock. Design values for clay minerals – negative in suprasolonetz and positive – in solonetz horizons. For clastogenic minerals, negative design values are set in suprasolonetz, with a maximum decrease in solonetz gori-umbrellas, and positive in accumulative-carbonate horizons. The calculated values of minerals and masses of the silicate part allowed establishing the deep development of the soil profile, which was revealed by negative values of the mass of clastogenic minerals and an excess mass of clay minerals in the illuvial part of the profile with respect to potassium feldspar. The accumulation of illite in the surface horizons is explained both by the illitization process and by the significant physical crushing of mica minerals of large fractions to the size of silty particles. The lithological heterogeneity of the profile affects the distortion of the calculation results. Calculated model of substances is formed in solonetz profile by real distribution of mineralogical components of eluvial-illuviation process.
Научная рецензия
ISSN 2312-4202 (Online)